A method was developed to investigate the mechanical structure of the cytoplasm based on the movement of an intracellular gold particle subjected to centrifugal acceleration (the gold particle method). The movement of the particle in the cell was observed and recorded with a new centrifuge microscope of stroboscopic type (13). In eggs and oocytes of the echinoderms, Clypeaster japonicus, Asterias amurensis, and Asterina pectinifera, the particle moved in the cytoplasm by an applied centrifugal acceleration in the centrifugal direction, but the course was not exactly straight and the velocity fluctuated during the movement, suggesting the existence of a network structure in the cytoplasm. In fertilized eggs, the movement of the particle by the centrifugal acceleration was impeded by the structures of the sperm aster and the cleavage diaster. The apparent viscosity of the cytoplasm in fertilized eggs changed in parallel to the development of the sperm aster and the mitotic diaster in the cell. These results indicate that the asters are really rigid structures in the cell as previously shown by the magnetic particle method (8).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1440-169X.1990.00015.x | DOI Listing |
Mol Med Rep
March 2025
Department of Pathology, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece.
Intrauterine growth restriction (IUGR) is the second most common obstetric complication after preterm labor. Appropriate trophoblast differentiation and placental structure, growth and function are key for the maintenance of pregnancy and normal fetal growth, development and survival. Extravillous trophoblast cell proliferation, migration and invasion are regulated by molecules produced by the fetomaternal interface, including autocrine factors produced by the trophoblast, such as insulin‑like growth factor (IGF)‑1.
View Article and Find Full Text PDFCurr Med Chem
January 2025
School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
Branched-chain amino acids (BCAAs) are essential amino acids for humans and play an indispensable role in many physiological and pathological processes. Branched-chain amino acid aminotransferase (BCAT) is a key enzyme that catalyzes the metabolism of BCAAs. BCAT is upregulated in many cancers and implicated in the development and progress of some other diseases, such as metabolic and neurological diseases; and therefore, targeting BCAT might be a potential therapeutic approach for these diseases.
View Article and Find Full Text PDFMicrolife
December 2024
Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Adolf-Reichwein-Str. 23, 07745 Jena, Germany.
The polyene antimycotic amphotericin B (AmB) and its liposomal formulation AmBisome belong to the treatment options of invasive aspergillosis caused by . Increasing resistance to AmB in clinical isolates of species is a growing concern, but mechanisms of AmB resistance remain unclear. In this study, we conducted a proteomic analysis of exposed to sublethal concentrations of AmB and AmBisome.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), UMR 7586, CNRS, Université Paris Diderot, 8, Pace Aurélie Nemours, 75013 Paris, France.
Accurate protein synthesis requires ribosomes to integrate signals from distant functional sites and execute complex dynamics. Despite advances in understanding ribosome structure and function, two key questions remain: how information is transmitted between these distant sites, and how ribosomal movements are synchronized? We recently highlighted the existence of ribosomal protein networks, likely evolved to participate in ribosome signaling. Here, we investigate the relationship between ribosomal protein networks and ribosome dynamics.
View Article and Find Full Text PDFActa Biomater
January 2025
Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. Electronic address:
Tolerogenic dendritic cells with professional antigen presentation via major histocompatibility complex molecules, co-stimulatory molecules (CD80/86), and interleukin 10 production have attracted significant attention as cellular therapies for autoimmune, allergic, and graft-versus-host diseases. In this study, we developed a cell culture dish equipped with polycation-porphyrin-conjugate-immobilized glass (PA-HP-G) to stimulate immature murine dendritic cell (iDCs). Upon irradiation with a red light at 635 nm toward the PA-HP-G surface, singlet oxygen was generated by the immobilized porphyrins on the PA-HP-G surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!