Heteroplastic combinations were made between Xenopus laevis presumptive neural plate and competent ectoderm of Xenopus borealis. Primarily induced presumptive neural plate cells (Xenopus laevis) can easily be distinguished from Xenopus borealis cells by specific quinacrine fluorescence of the nuclei. It was clearly shown that presumptive neural plate, which has primarily been induced by the underlying chordamesoderm exerts homoiogenetic inducing activity on competent ectoderm. The inducing activity is increased in pieces of presumptive neural plates, when the superficial layer has been removed from the adjacent deep layers. The enhancement can be explained by the fact that the removal of the superficial layer acting as barrier allows the inducing stimulus to be easily propagated from the apical (distal) side of the deep layers of the presumptive neural plate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1440-169X.1990.00583.x | DOI Listing |
Dev Biol
January 2025
University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK. Electronic address:
Signals from the lens regulate multiple aspects of eye development, including establishment of eye size, patterning of the presumptive iris and ciliary body in the anterior optic cup and migration and differentiation of neural crest cells. To advance understanding of the molecular mechanism by which the lens regulates eye development, we performed transcriptome profiling of embryonic chicken retinas after lens removal. Genes associated with nervous system development were upregulated in lens-removed eyes, but the presumptive ciliary body and iris region did not adopt a neural retina identity following lens removal.
View Article and Find Full Text PDFMov Disord
January 2025
Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China.
Background: Hereditary spastic paraplegia (HSP) is characterized by progressive lower limb weakness and spasticity, with unknown genetic cause in many cases.
Objectives: To identify novel genetic causes of HSP.
Methods: Phenotypic characterization, genetic screening, transcriptome sequencing, and peroneal nerve biopsy were conducted in a Chinese HSP family.
Anat Sci Int
October 2024
Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
The subiculum is one of the major output structures of the hippocampal formation and is an important brain region for memory. We have previously reported that the subiculum of rodents can be morphologically divided into its temporal (ventral) two-thirds and the septal (dorsal) third and that the former can be further subdivided into the distal (Sub1) and proximal (Sub2) regions, on a basis of immunohistochemical localizations of several Sub2-specific proteins. However, it remains unclear whether detailed structural organization found in the temporal subiculum is applicable to the septal subiculum.
View Article and Find Full Text PDFSarcopenia is a comprehensive degenerative disease with the progressive loss of skeletal muscle mass with age, accompanied by the loss of muscle strength and muscle dysfunction. Individuals with unmanaged sarcopenia may experience adverse outcomes. Periodically monitoring muscle function to detect muscle degeneration caused by sarcopenia and treating degenerated muscles is essential.
View Article and Find Full Text PDFIn amniotes, embryonic tissues originate from multipotent epiblast cells, arranged in a mosaic of presumptive territories. How these domains fated to specific lineages become segregated during body formation remains poorly understood. Using single cell RNA sequencing analysis and lineage tracing in the chicken embryo, we identify epiblast cells contributing descendants to the neural tube, somites and lateral plate after completion of gastrulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!