Echinonectin (EN) is a galactose-binding lectin present in eggs and embryos of the sea urchin Lytechinus variegatus. Recent studies have suggested that EN is a hyaline layer protein that may function as a substrate adhesion molecule (SAM) during development. We have used monoclonal and affinity-purified polyclonal antibodies that specifically recognize this protein to determine its spatial and temporal expression during embryogenesis. EN is stored in granules or vesicles in the unfertilized egg. After fertilization, these granules are rapidly redistributed to the apical cytoplasm of the zygote. Our results show that at subsequent stages of development the lectin is expressed by cells of all three germ layers, including cells of the developing gut, coelomic pouches, and ectoderm, and by both primary and secondary mesenchyme cells. In contrast to previous observations based solely upon light level immunofluorescent staining, immunoelectron microscopy demonstrates that EN is localized in intracellular, membrane-bounded vesicles. In epithelial cell types these vesicles have a highly polarized distribution and are found in the apical cortical cytoplasm. In mesenchyme cells the distribution of EN-containing vesicles is not obviously polarized. Steady-state levels of EN protein in the embryo remain almost constant from fertilization to the pluteus larva stage, Metabolic labeling studies show that synthesis of EN in L. variegatus begins immediately after fertilization and continues throughout embryogenesis. Monospecific antibodies raised against L. variegatus EN have also been used to determine whether this lectin is expressed in other echinoid species.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1440-169X.1992.tb00003.xDOI Listing

Publication Analysis

Top Keywords

sea urchin
8
lectin expressed
8
mesenchyme cells
8
developmental expression
4
expression echinonectin
4
echinonectin endogenous
4
lectin
4
endogenous lectin
4
lectin sea
4
urchin embryo
4

Similar Publications

Liposomal drug delivery systems are successfully used in various fields of medicine for external and systemic applications. Marine organisms contain biologically active substances that have a unique structure and exhibit a wide range of biological activities. Polysaccharide of red seaweed (carrageenan (CRG)), and water-insoluble sea urchin pigment (echinochrome (Ech)) interact with each other and form a stable complex.

View Article and Find Full Text PDF

There is increasing awareness that marine invertebrates such as abalones are at risk from the combined stressors of fishing and climate change. Abalones are an important marine fishery resource and of cultural importance to Indigenous and non-Indigenous people. A highly priced marine delicacy, they are inherently vulnerable: individuals are slow-growing and long-lived and successful reproduction requires dense assemblages.

View Article and Find Full Text PDF

The evolutionary introduction of asymmetric cell division (ACD) into the developmental program facilitates the formation of a new cell type, contributing to developmental diversity and, eventually, species diversification. The micromere of the sea urchin embryo may serve as one of those examples: an ACD at the 16-cell stage forms micromeres unique to echinoids among echinoderms. We previously reported that a polarity factor, activator of G-protein signaling (AGS), plays a crucial role in micromere formation.

View Article and Find Full Text PDF

Effect of cooking conditions on sea urchin dumplings.

Food Chem

December 2024

SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

The objective of this study was to investigate the changes in flavour and taste of sea urchin dumplings subjected to different cooking methods, utilising gas chromatography-ion mobility spectrometry (GC-IMS), electronic tongue (E-tongue) analysis, free amino acid content assessment and sensory evaluation. The GC-IMS technique successfully detected 69 volatile compounds in the skin and 60 volatile compounds in the filling of the boiled dumplings. From the established fingerprints, it was found that there were significant differences in the flavour compounds of dumplings skins among the groups.

View Article and Find Full Text PDF

Early sea urchin embryos contain cells called micromeres, which play an important role in the formation of three mesodermal cell types: skeletogenic, blastocoelar and pigment cells. When micromeres are removed, the embryo can replace the skeletogenic and blastocoelar cells via a process called 'transfating', whereby other cells in the embryo step in to take on new roles. However, the pigment cells do not reappear, and the reasons for this are unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!