Single energy metal artifact reduction performs better than virtual monoenergetic dual-energy reconstruction in CT of the equine proximal phalanx.

Vet Radiol Ultrasound

Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.

Published: July 2023

Metal artifacts in CT negatively impact the evaluation of surgical implants and the surrounding tissues. The aim of this prospective experimental study was to evaluate the ability of a single energy metal artifact reduction (SEMAR™, Canon) algorithm and virtual monoenergetic (VM) dual-energy CT (DECT) scanning techniques to reduce metal artifacts from stainless steel screws surgically inserted into the equine proximal phalanx. Seven acquisitions of 18 cadaver limbs were performed on a Canon Aquilion One Vision CT scanner (Helical +SEMAR, Volume +SEMAR, Standard Helical, Standard Volume and VM DECT at 135, 120, and 105 keV) and reconstructed in a bone kernel. Blinded subjective evaluation performed by three observers indicated a significant effect of acquisition in both adjacent tissues (P < 0.001) and distant tissues (P < 0.001) and the best metal artifact reduction was seen with Helical +SEMAR and Volume +SEMAR. The subjective overall preference of CT acquisition type was (1) Helical +SEMAR, (2) Volume +SEMAR, (3) VM DECT 135 keV, (4) VM DECT 120 keV, (5) VM DECT 105 keV, (6) Standard Helical, (7) Standard Volume (P < 0.001). Unblinded objective evaluation performed by one observer showed that VM DECT 120 keV, Helical +SEMAR, and Volume +SEMAR performed similarly and were objectively the best at reducing blooming artifact. Overall, the best metal artifact reduction was obtained with SEMAR, followed by VM DECT. However, VM DECT performance varies with energy level and was associated with decreased image quality in distant tissues and artifactual overcorrection of metal artifacts at high energy levels.

Download full-text PDF

Source
http://dx.doi.org/10.1111/vru.13258DOI Listing

Publication Analysis

Top Keywords

single energy
8
energy metal
8
metal artifact
8
artifact reduction
8
virtual monoenergetic
8
monoenergetic dual-energy
8
equine proximal
8
proximal phalanx
8
metal artifacts
8
metal
4

Similar Publications

Pulsed-Current Operation Enhances HO Production on a Boron-Doped Diamond Mesh Anode in a Zero-Gap PEM Electrolyzer.

ChemSusChem

January 2025

Department of Chemical Engineering, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The, Netherlands.

A niobium (Nb) mesh electrode was coated with boron-doped diamond (BDD) using chemical vapor deposition in a custom-built hot-filament reactor. The BDD-functionalized mesh was tested in a zero-gap electrolysis configuration and evaluated for the anodic formation of HO by selective oxidation of water, including the analysis of the effects on Faradaic efficiency towards HO (FEH2O2) induced by pulsed electrolysis. A low electrolyte flow rate (V⋅) was found to result in a relatively high concentration of HO in single-pass electrolysis experiments.

View Article and Find Full Text PDF

Background: Calf muscle weakness is a common symptom in slowly progressive neuromuscular disorders that lead to walking problems like instability and increased walking effort. The mainstay of treatment to improve walking in this population is the provision of ankle-foot-orthoses (AFOs). Since we are not aware of an up-to-date and complete overview of the effects of AFOs used for calf muscle weakness in slowly progressive neuromuscular disorders, we reviewed the evidence for the effectiveness of AFOs to improve walking in this patient group, in order to support clinical decision-making.

View Article and Find Full Text PDF

Building insights into the structure-performance relationship of catalysts has been emphasized recently. However, it remains a challenge due to catalysts' various and complex structures, especially the easily overlooked influence of the support material. Here, we reveal the crucial influences of boron introduction on synthesizing 3D carbon nanotube monoliths with embedded multistate Co metals, i.

View Article and Find Full Text PDF

Sulfur Vacancies Limit the Open-Circuit Voltage of SbS Solar Cells.

ACS Energy Lett

January 2025

Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.

Antimony sulfide (SbS) is a promising candidate as an absorber layer for single-junction solar cells and the top subcell in tandem solar cells. However, the power conversion efficiency of SbS-based solar cells has remained stagnant over the past decade, largely due to trap-assisted nonradiative recombination. Here we assess the trap-limited conversion efficiency of SbS by investigating nonradiative carrier capture rates for intrinsic point defects using first-principles calculations and Sah-Shockley statistics.

View Article and Find Full Text PDF

Plasmonic Ag/PMMA/Eu nanocomposite for sensitive dual mode detection of malachite green.

Biomed Opt Express

January 2025

School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China.

Accurate and efficient determination of malachite green (MG) in aquaculture is crucial for ensuring environment and food safety. Herein, we present a dual-response fluorescence probe based on an Ag/PMMA/Eu nanocomposite for the sensitive detection of MG with low concentration and single droplet. The luminescence properties of the Ag/PMMA/Eu nanocomposite and the fluorescence resonance energy transfer (FRET) effect between Eu and MG are significantly improved due to the localized surface plasmon resonance (LSPR) effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!