Background: Linezolid is an effective, but toxic anti-tuberculosis drug that is currently recommended for the treatment of drug-resistant tuberculosis. Improved oxazolidinones should have a better safety profile, while preserving efficacy. Delpazolid is a novel oxazolidinone developed by LegoChem Biosciences Inc. that has been evaluated up to phase 2a clinical trials. Since oxazolidinone toxicity can occur late in treatment, LegoChem Biosciences Inc. and the PanACEA Consortium designed DECODE to be an innovative dose-ranging study with long-term follow-up for determining the exposure-response and exposure-toxicity relationship of delpazolid to support dose selection for later studies. Delpazolid is administered in combination with bedaquiline, delamanid and moxifloxacin.
Methods: Seventy-five participants with drug-sensitive, pulmonary tuberculosis will receive bedaquiline, delamanid and moxifloxacin, and will be randomized to delpazolid dosages of 0 mg, 400 mg, 800 mg, 1200 mg once daily, or 800 mg twice daily, for 16 weeks. The primary efficacy endpoint will be the rate of decline of bacterial load on treatment, measured by MGIT liquid culture time to detection from weekly sputum cultures. The primary safety endpoint will be the proportion of oxazolidinone class toxicities; neuropathy, myelosuppression, or tyramine pressor response. Participants who convert to negative liquid media culture by week 8 will stop treatment after the end of their 16-week course and will be observed for relapse until week 52. Participants who do not convert to negative culture will receive continuation phase treatment with rifampicin and isoniazid to complete a six-month treatment course.
Discussion: DECODE is an innovative dose-finding trial, designed to support exposure-response modelling for safe and effective dose selection. The trial design allows assessment of occurrence of late toxicities as observed with linezolid, which is necessary in clinical evaluation of novel oxazolidinones. The primary efficacy endpoint is the change in bacterial load, an endpoint conventionally used in shorter dose-finding trials. Long-term follow-up after shortened treatment is possible through a safety rule excluding slow-and non-responders from potentially poorly performing dosages.
Trial Registration: DECODE was registered in ClinicalTrials.gov before recruitment start on 22 October 2021 (NCT04550832).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243693 | PMC |
http://dx.doi.org/10.1186/s13063-023-07354-5 | DOI Listing |
Clin Pharmacol Ther
December 2024
Department of Pharmacy, Uppsala University, Uppsala, Sweden.
The complexity of the currently registered dosing schedules for bedaquiline and delamanid is a barrier to uptake in drug-resistant tuberculosis treatment across all ages. A simpler once-daily dosing schedule is critical to ensure patient-friendly regimens with good adherence. We assessed expected drug exposures with proposed once-daily doses for adults and compared novel model-informed once-daily dosing strategies for children with current World Health Organization (WHO) recommended dosing.
View Article and Find Full Text PDFAntimicrob Agents Chemother
December 2024
Public Health Agency of Sweden, Solna, Sweden.
This comparative study aimed at qualifying a broth microdilution (BMD) assay for phenotypic drug susceptibility testing (pDST) of complex (MTBC) strains for implementation in a routine DST workflow. The assay was developed based on the EUCAST (European Committee on Antimicrobial Susceptibility Testing) reference protocol for determination of the minimum inhibitory concentration (MIC) of 14 anti-tuberculous drugs (isoniazid [INH], rifampicin [RIF], ethambutol [EMB], amikacin [AMI], moxifloxacin [MFX], levofloxacin [LFX], bedaquiline [BDQ], clofazimine [CFZ], delamanid [DLM], pretomanid [PA], para-aminosalicylic acid [PAS], linezolid [LZD], ethionamide [ETH], and cycloserine [CS]). Forty MTBC strains with various drug resistance profiles were tested to determine the agreement between MIC results and genotypic drug susceptibility testing (gDST) results derived from whole-genome sequencing (WGS).
View Article and Find Full Text PDFBiomed Environ Sci
November 2024
Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China.
Clin Infect Dis
December 2024
Interactive Research & Development (IRD) Global, Singapore, Singapore.
Background: The 2022 WHO guidelines on multi-drug/rifampicin resistant tuberculosis (MDR/RR-TB) recommend six months of bedaquiline (Bdq) in the all-oral 9-month shorter regimen and six months or longer for Bdq and delamanid (Dlm) in the 18-20-month longer regimen. However, lack of evidence on extended treatment using Bdq or Dlm has limited their use to six months. We examine the frequency and incidence of QT prolongation based on duration of Bdq and/or Dlm use in longer regimens.
View Article and Find Full Text PDFJ Family Med Prim Care
October 2024
Department of Pharmacology, Kalinga Institute of Medical Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India.
Background: The foremost concern and challenge in managing drug-resistant tuberculosis is ensuring a high health-related quality of life (HRQoL). The effectiveness of pre-extensively drug-resistant (Pre-XDR) tuberculosis management hinges on patients adhering to therapy, a crucial factor in averting the development of drug-resistant strains, ultimately enhancing HRQoL.
Methodology: This analytical longitudinal study spanned two years at a teaching hospital and involved collaboration between the Departments of Pharmacology and Pulmonary Medicine.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!