Background: Cancer cachexia, occurring in ~ 80% pancreatic cancer (PC) patients overall, is a paraneoplastic syndrome mediated by cancer-induced systemic inflammation and characterized by weight loss and skeletal muscle wasting. Identifying clinically relevant PC-derived pro-inflammatory factors with cachexigenic potential may provide novel insights and therapeutic strategies.
Methods: Pro-inflammatory factors with cachexigenic potential in PC were identified by bioinformatic analysis. The abilities of selected candidate factors in inducing skeletal muscle atrophy were investigated. Expression levels of candidate factors in tumors and sera was compared between PC patients with and without cachexia. Associations between serum levels of the candidates and weight loss were assessed in PC patients.
Results: S100A8, S100A9, and S100A8/A9 were identified and shown to induce C2C12 myotube atrophy. Tumors of PC patients with cachexia had markedly elevated expression of S100A8 (P = 0.003) and S100A9 (P < 0.001). PC patients with cachexia had significantly higher serum levels of S100A8, S100A9 and S100A8/A9. Serum levels of these factors positively correlated with percentage of weight loss [correlation coefficient: S100A8: 0.33 (P < 0.001); S100A9: 0.30 (P < 0.001); S100A8/A9: 0.24 (P = 0.004)] and independently predicted the occurrence of cachexia [adjusted odds ratio (95% confidence interval) per 1ng/ml increase: S100A8 1.11 (1.02-1.21), P = 0.014; S100A9 1.10 (1.04-1.16), P = 0.001; per 1 µg/ml increase: S100A8/A9 1.04 (1.01-1.06), P = 0.009].
Conclusions: Atrophic effects of S100A8, S100A9, and S100A8/A9 indicated them as potential pathogenic factors of PC-induced cachexia. In addition, the correlation with the degree of weight loss and prediction of cachexia in PC patients implicated their potential utility in the diagnosis of PC-induced cachexia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10242984 | PMC |
http://dx.doi.org/10.1186/s12885-023-11009-8 | DOI Listing |
Oncogene
January 2025
Department of Pathology, University of California, San Diego, La Jolla, USA.
Smoking plays an underappreciated role in breast cancer progression, increasing recurrence and mortality in patients. Here, we show that S100A8/A9 innate immune signaling is a molecular mechanism that identifies smoking-related breast cancers and underlies their enhanced malignancy. In contrast to acute exposure, chronic nicotine increased tumorigenicity and reprogrammed breast cancer cells to express innate immune response genes.
View Article and Find Full Text PDFJ Invest Dermatol
January 2025
Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan. Electronic address:
Contact hypersensitivity (CHS) and atopic dermatitis (AD) are pervasive inflammatory skin diseases with similar symptoms, and the global prevalence of both conditions is steadily rising. Many compounds and biotics have been developed to target molecules critical to the etiology or pathogenesis of CHS and AD. However, such molecules are sometimes ineffective or lose potency over the therapeutic course.
View Article and Find Full Text PDFCell
January 2025
Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany. Electronic address:
Host-microbiome-dietary interactions play crucial roles in regulating human health, yet their direct functional assessment remains challenging. We adopted metagenome-informed metaproteomics (MIM), in mice and humans, to non-invasively explore species-level microbiome-host interactions during commensal and pathogen colonization, nutritional modification, and antibiotic-induced perturbation. Simultaneously, fecal MIM accurately characterized the nutritional exposure landscape in multiple clinical and dietary contexts.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Allergy and Respiratory Medicine, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan.
Blood-based predictive markers for the efficacy of immune checkpoint inhibitors (ICIs) have not yet been established. We investigated the association of the plasma level of S100A8/A9 with the efficacy of immunotherapy. We evaluated patients with unresectable stage III/IV or recurrent non-small cell lung cancer (NSCLC) who were treated with ICIs at Okayama University Hospital.
View Article and Find Full Text PDFiScience
January 2025
INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France.
Elevated circulating levels of calprotectin (CAL), the S100A8/A9 heterodimer, are biomarkers of severe systemic inflammation. Here, we investigate the effects of CAL on early human hematopoiesis. CAL demonstrates limited impact on gene expression in stem and progenitor cells, in contrast with interleukin-6 (IL6), which promotes the expression of the and genes in hematopoietic progenitors and the generation of monocytes that release CAL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!