Excess accumulation and aggregation of toxic soluble and insoluble amyloid-β species in the brain are a major hallmark of Alzheimer's disease. Randomized clinical trials show reduced brain amyloid-β deposits using monoclonal antibodies that target amyloid-β and have identified MRI signal abnormalities called amyloid-related imaging abnormalities (ARIA) as possible spontaneous or treatment-related adverse events. This review provides a comprehensive state-of-the-art conceptual review of radiological features, clinical detection and classification challenges, pathophysiology, underlying biological mechanism(s) and risk factors/predictors associated with ARIA. We summarize the existing literature and current lines of evidence with ARIA-oedema/effusion (ARIA-E) and ARIA-haemosiderosis/microhaemorrhages (ARIA-H) seen across anti-amyloid clinical trials and therapeutic development. Both forms of ARIA may occur, often early, during anti-amyloid-β monoclonal antibody treatment. Across randomized controlled trials, most ARIA cases were asymptomatic. Symptomatic ARIA-E cases often occurred at higher doses and resolved within 3-4 months or upon treatment cessation. Apolipoprotein E haplotype and treatment dosage are major risk factors for ARIA-E and ARIA-H. Presence of any microhaemorrhage on baseline MRI increases the risk of ARIA. ARIA shares many clinical, biological and pathophysiological features with Alzheimer's disease and cerebral amyloid angiopathy. There is a great need to conceptually link the evident synergistic interplay associated with such underlying conditions to allow clinicians and researchers to further understand, deliberate and investigate on the combined effects of these multiple pathophysiological processes. Moreover, this review article aims to better assist clinicians in detection (either observed via symptoms or visually on MRI), management based on appropriate use recommendations, and general preparedness and awareness when ARIA are observed as well as researchers in the fundamental understanding of the various antibodies in development and their associated risks of ARIA. To facilitate ARIA detection in clinical trials and clinical practice, we recommend the implementation of standardized MRI protocols and rigorous reporting standards. With the availability of approved amyloid-β therapies in the clinic, standardized and rigorous clinical and radiological monitoring and management protocols are required to effectively detect, monitor, and manage ARIA in real-world clinical settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629981PMC
http://dx.doi.org/10.1093/brain/awad188DOI Listing

Publication Analysis

Top Keywords

clinical trials
12
aria
11
clinical
9
amyloid-related imaging
8
imaging abnormalities
8
abnormalities aria
8
alzheimer's disease
8
aria radiological
4
radiological biological
4
biological clinical
4

Similar Publications

BAY 2413555 is a novel selective and reversible positive allosteric modulator of the type 2 muscarinic acetylcholine (M2) receptor, aimed at enhancing parasympathetic signaling and restoring cardiac autonomic balance for the treatment of heart failure (HF). This study tested the safety, tolerability and pharmacokinetics of this novel therapeutic option. REMOTE-HF was a multicenter, double-blind, randomized, placebo-controlled, phase Ib dose-titration study with two active arms.

View Article and Find Full Text PDF

Trivalent recombinant protein vaccine induces cross-neutralization against XBB lineage and JN.1 subvariants: preclinical and phase 1 clinical trials.

Nat Commun

December 2024

Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.

The immune escape capacities of XBB variants necessitate the authorization of vaccines with these antigens. In this study, we produce three recombinant trimeric proteins from the RBD sequences of Delta, BA.5, and XBB.

View Article and Find Full Text PDF

Here we report results of a phase 1 multi-institutional, open-label, dose-escalation trial (NCT02744287) of BPX-601, an investigational autologous PSCA-directed GoCAR-T® cell product containing an inducible MyD88/CD40 ON-switch responsive to the activating dimerizer rimiducid, in patients with metastatic pancreatic (mPDAC) or castration-resistant prostate cancer (mCRPC). Primary objectives were to evaluate safety and tolerability and determine the recommended phase 2 dose/schedule (RP2D). Secondary objectives included the assessment of efficacy and characterization of the pharmacokinetics of rimiducid.

View Article and Find Full Text PDF

Background: Evidence indicates a wide range of andrological alterations in patients with the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) infection and Coronavirus Disease 2019 (COVID-19).

Aim: To provide an update on the andrological effects of SARS-CoV-2 infection and COVID-19.

Methods: PubMed/MEDLINE and Institutional websites were searched for randomized clinical trials, non-systematic reviews, systematic reviews, and meta-analyses.

View Article and Find Full Text PDF

Impact of blood flow restriction intensity on pain perception and muscle recovery post-eccentric exercise.

Clin Physiol Funct Imaging

January 2025

Faculty of Health Sciences, Division of Physiotherapy and Rehabilitation, Istanbul Okan University, Istanbul, Turkey.

Background: Delayed onset muscle soreness (DOMS) is a well-established phenomenon characterized by ultrastructural muscle damage that typically develops following unfamiliar or high-intensity exercise. DOMS manifests with a constellation of symptoms, including muscle tenderness, stiffness, edema, mechanical hyperalgesia, and a reduced range of joint motion. In recent years, the application of blood flow restriction (BFR) has garnered attention for its potential impact on DOMS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!