A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Novel Group of Dynamin-Related Proteins Shared by Eukaryotes and Giant Viruses Is Able to Remodel Mitochondria From Within the Matrix. | LitMetric

The diverse GTPases of the dynamin superfamily play various roles in the cell, as exemplified by the dynamin-related proteins (DRPs) Mgm1 and Opa1, which remodel the mitochondrial inner membrane in fungi and metazoans, respectively. Via an exhaustive search of genomic and metagenomic databases, we found previously unknown DRP types occurring in diverse eukaryotes and giant viruses (phylum Nucleocytoviricota). One novel DRP clade, termed MidX, combined hitherto uncharacterized proteins from giant viruses and six distantly related eukaryote taxa (Stramenopiles, Telonemia, Picozoa, Amoebozoa, Apusomonadida, and Choanoflagellata). MidX stood out because it was not only predicted to be mitochondria-targeted but also to assume a tertiary structure not observed in other DRPs before. To understand how MidX affects mitochondria, we exogenously expressed MidX from Hyperionvirus in the kinetoplastid Trypanosoma brucei, which lacks Mgm1 or Opa1 orthologs. MidX massively affected mitochondrial morphology from inside the matrix, where it closely associates with the inner membrane. This unprecedented mode of action contrasts to those of Mgm1 and Opa1, which mediate inner membrane remodeling in the intermembrane space. We speculate that MidX was acquired in Nucleocytoviricota evolution by horizontal gene transfer from eukaryotes and is used by giant viruses to remodel host mitochondria during infection. MidX's unique structure may be an adaptation for reshaping mitochondria from the inside. Finally, Mgm1 forms a sister group to MidX and not Opa1 in our phylogenetic analysis, throwing into question the long-presumed homology of these DRPs with similar roles in sister lineages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280142PMC
http://dx.doi.org/10.1093/molbev/msad134DOI Listing

Publication Analysis

Top Keywords

giant viruses
16
eukaryotes giant
12
mgm1 opa1
12
inner membrane
12
dynamin-related proteins
8
viruses remodel
8
midx
7
novel group
4
group dynamin-related
4
proteins shared
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!