A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bivalves Present the Largest and Most Diversified Repertoire of Toll-Like Receptors in the Animal Kingdom, Suggesting Broad-Spectrum Pathogen Recognition in Marine Waters. | LitMetric

AI Article Synopsis

  • Toll-like receptors (TLRs) are crucial components of the innate immune system, with a significant role in pathogen recognition and immune response activation across various animal species, particularly in mollusks.
  • Research indicates that bivalve mollusks, especially marine mussels (Mytilus spp.), possess the largest and most diverse TLR gene repertoire in the animal kingdom, reflecting unique evolutionary adaptations.
  • The study highlights the functional specialization of TLRs in bivalves, showing their modulation in response to environmental factors and suggesting an evolutionary trend toward diversification and specialization in immune functions among these organisms.

Article Abstract

Toll-like receptors (TLRs) are the most widespread class of membrane-bound innate immune receptors, responsible of specific pathogen recognition and production of immune effectors through the activation of intracellular signaling cascades. The repertoire of TLRs was analyzed in 85 metazoans, enriched on molluscan species, an underrepresented phylum in previous studies. Following an ancient evolutionary origin, suggested by the presence of TLR genes in Anthozoa (Cnidaria), these receptors underwent multiple independent gene family expansions, the most significant of which occurred in bivalve molluscs. Marine mussels (Mytilus spp.) had the largest TLR repertoire in the animal kingdom, with evidence of several lineage-specific expanded TLR subfamilies with different degrees of orthology conservation within bivalves. Phylogenetic analyses revealed that bivalve TLR repertoires were more diversified than their counterparts in deuterostomes or ecdysozoans. The complex evolutionary history of TLRs, characterized by lineage-specific expansions and losses, along with episodic positive selection acting on the extracellular recognition domains, suggests that functional diversification might be a leading evolutionary force. We analyzed a comprehensive transcriptomic data set from Mytilus galloprovincialis and built transcriptomic correlation clusters with the TLRs expressed in gills and in hemocytes. The implication of specific TLRs in different immune pathways was evidenced, as well as their specific modulation in response to different biotic and abiotic stimuli. We propose that, in a similar fashion to the remarkable functional specialization of vertebrate TLRs, the expansion of the TLR gene family in bivalves attends to a functional specification motivated by the biological particularities of these organisms and their living environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10279657PMC
http://dx.doi.org/10.1093/molbev/msad133DOI Listing

Publication Analysis

Top Keywords

toll-like receptors
8
animal kingdom
8
pathogen recognition
8
gene family
8
tlrs
6
tlr
5
bivalves largest
4
largest diversified
4
diversified repertoire
4
repertoire toll-like
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!