Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Toll-like receptors (TLRs) are the most widespread class of membrane-bound innate immune receptors, responsible of specific pathogen recognition and production of immune effectors through the activation of intracellular signaling cascades. The repertoire of TLRs was analyzed in 85 metazoans, enriched on molluscan species, an underrepresented phylum in previous studies. Following an ancient evolutionary origin, suggested by the presence of TLR genes in Anthozoa (Cnidaria), these receptors underwent multiple independent gene family expansions, the most significant of which occurred in bivalve molluscs. Marine mussels (Mytilus spp.) had the largest TLR repertoire in the animal kingdom, with evidence of several lineage-specific expanded TLR subfamilies with different degrees of orthology conservation within bivalves. Phylogenetic analyses revealed that bivalve TLR repertoires were more diversified than their counterparts in deuterostomes or ecdysozoans. The complex evolutionary history of TLRs, characterized by lineage-specific expansions and losses, along with episodic positive selection acting on the extracellular recognition domains, suggests that functional diversification might be a leading evolutionary force. We analyzed a comprehensive transcriptomic data set from Mytilus galloprovincialis and built transcriptomic correlation clusters with the TLRs expressed in gills and in hemocytes. The implication of specific TLRs in different immune pathways was evidenced, as well as their specific modulation in response to different biotic and abiotic stimuli. We propose that, in a similar fashion to the remarkable functional specialization of vertebrate TLRs, the expansion of the TLR gene family in bivalves attends to a functional specification motivated by the biological particularities of these organisms and their living environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10279657 | PMC |
http://dx.doi.org/10.1093/molbev/msad133 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!