Cadmium effects on net N2O production by the deep-sea isolate Shewanella loihica PV-4.

FEMS Microbiol Lett

Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos 4450-208, Portugal.

Published: January 2023

AI Article Synopsis

  • Deep-sea mining can release metals into the seabed, potentially disrupting microbial ecosystems crucial for functions like greenhouse gas regulation.
  • A study focused on the deep-sea bacteria Shewanella loihica PV-4 found that exposure to cadmium (Cd) significantly reduced its production of N2O, a potent greenhouse gas.
  • The inhibition of N2O production was linked to decreased expression of key genes involved in nitrogen cycling, suggesting that other deep-sea bacteria might also be affected, warranting further research into diverse communities and varying conditions.

Article Abstract

Deep-sea mining may lead to the release of high concentrations of metals into the surrounding seabed, which can disturb important ecosystem functions provided by microbial communities. Among these, the production of N2O and its reduction to N2 is of great relevance since N2O is an important greenhouse gas. Metal impacts on net N2O production by deep-sea bacteria are, however, currently unexplored. Here, we evaluated the effects of cadmium (Cd) on net N2O production by a deep-sea isolate, Shewanella loihica PV-4. We performed a series of Cd exposure incubations in oxic conditions and determined N2O fluxes during induced anoxic conditions, as well as the relative expression of the nitrite reductase gene (nirK), preceding N2O production, and N2O reductase gene (nosZ), responsible for N2O reduction. Net N2O production by S. loihica PV-4 exposed to Cd was strongly inhibited when compared to the control treatment (no metal). Both nirK and nosZ gene expression were inhibited in reactors with Cd, but nirK inhibition was stronger, supporting the lower net N2O production observed with Cd. The Cd inhibition of net N2O production observed in this study poses the question whether other deep-sea bacteria would undergo the same effects. Future studies should address this question as well as its applicability to complex communities and other physicochemical conditions, which remain to be evaluated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10337742PMC
http://dx.doi.org/10.1093/femsle/fnad047DOI Listing

Publication Analysis

Top Keywords

n2o production
28
net n2o
24
n2o
12
production deep-sea
12
loihica pv-4
12
production
8
deep-sea isolate
8
isolate shewanella
8
shewanella loihica
8
production n2o
8

Similar Publications

The role of biochar in reducing greenhouse gas (GHG) emissions and improving soil health is a topic of extensive research, yet its effects remain debated. Conflicting evidence exists regarding biochar's impact on soil microbial-mediated emissions with respect to different GHGs. This study systematically examines these divergent perspectives, aiming to investigate biochar's influence on GHG emissions and soil health in agricultural soils.

View Article and Find Full Text PDF

Moderate grazing reduces while mowing increases greenhouse gas emissions from a steppe grassland: Key modulating function played by plant standing biomass.

J Environ Manage

January 2025

Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China. Electronic address:

Grassland represents one of the most expansive terrestrial ecosystems, exerting a profound influence on atmospheric greenhouse gas (GHG) levels within the broader context of global change. Both climate and land use changes play important roles in modulating grassland GHG emissions by directly or indirectly altering soil physical and chemical properties, especially soil temperature and inorganic nitrogen content. The optimal grassland management practices need to simultaneously meet the requirements of reducing GHG emissions, maintaining biological biodiversity, and ensuring productivity.

View Article and Find Full Text PDF

Nitrous oxide production via enzymatic nitroxyl from the nitrifying archaeon .

Proc Natl Acad Sci U S A

January 2025

Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853.

Ammonia oxidizing archaea (AOA) are among the most abundant microorganisms on earth and are known to be a major source of nitrous oxide (NO) emissions, although biochemical origins of this NO remain unknown. Enzymological details of AOA nitrogen metabolism are broadly unavailable. We report the recombinant expression, purification, and characterization of a multicopper oxidase, Nmar_1354, from the AOA .

View Article and Find Full Text PDF

Anesthetic gases contribute to global warming. We described a two-year performance improvement project to examine the association of individualized provider dashboard feedback of anesthetic gas carbon dioxide equivalent (CDE) production and median perioperative fresh gas flows (FGF) during general anesthetics during perioperative management. Using a custom structured query language (SQL) query, hourly CDE for each anesthetic gas and median FGF were determined.

View Article and Find Full Text PDF

Isostructured lanthanide-Brønsted acidic ionic liquid coordination polymers, {[Ln(CHNO)(HO)]Cl} (LnIMDC(HO), Ln = Eu, Gd, or Tb, CHNO = [IMDC]) and {[EuTb(CHNO)(HO)]Cl} (EuTbIMDC(HO))), have been synthesized using 1,3-bis(carboxymethyl) imidazolium chloride ([HIMDC]Cl) as linkers. LnIMDC(HO) (Ln = Eu or Tb) and EuTbIMDC(HO) exhibit good temperature sensing performance over a wide temperature range with maximum sensitivities of 2.73%·K (392 K) and 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!