Massively parallel CRISPR off-target detection enables rapid off-target prediction model building.

Med

Department of Gynecologic Oncology, Women and Children's Hospital Affiliated to Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China; Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China. Electronic address:

Published: July 2023

Background: CRISPR (clustered regularly interspaced short palindromic repeats) genome editing holds tremendous potential in clinical translation. However, the off-target effect has always been a major concern.

Methods: Here, we have developed a novel sensitive and specific off-target detection method, AID-seq (adaptor-mediated off-target identification by sequencing), that can comprehensively and faithfully detect the low-frequency off targets generated by different CRISPR nucleases (including Cas9 and Cas12a).

Findings: Based on AID-seq, we developed a pooled strategy to simultaneously identify the on/off targets of multiple gRNAs, as well as using mixed human and human papillomavirus (HPV) genomes to screen the most efficient and safe targets from 416 HPV gRNA candidates for antiviral therapy. Moreover, we used the pooled strategy with 2,069 single-guide RNAs (sgRNAs) at a pool size of about 500 to profile the properties of our newly discovered CRISPR, FrCas9. Importantly, we successfully built an off-target detection model using these off-target data via the CRISPR-Net deep learning method (area under the receiver operating characteristic curve [AUROC] = 0.97, area under the precision recall curve [AUPRC] = 0.29).

Conclusions: To our knowledge, AID-seq is the most sensitive and specific in vitro off-target detection method to date. And the pooled AID-seq strategy can be used as a rapid and high-throughput platform to select the best sgRNAs and characterize the properties of new CRISPRs.

Funding: This work was supported by The National Natural Science Foundation of China (grant nos. 32171465 and 82102392), the General Program of Natural Science Foundation of Guangdong Province of China (grant no. 2021A1515012438), Guangdong Basic and Applied Basic Research Foundation (grant no. 2020A1515110170), and the National Ten Thousand Plan-Young Top Talents of China (grant no. 80000-41180002).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.medj.2023.05.005DOI Listing

Publication Analysis

Top Keywords

off-target detection
16
china grant
12
off-target
8
sensitive specific
8
detection method
8
pooled strategy
8
natural science
8
science foundation
8
massively parallel
4
crispr
4

Similar Publications

Cyclooxygenase-2 (COX-2) plays a crucial role in inflammation and has been implicated in cancer development. Understanding the behavior of COX-2 in different cellular contexts is essential for developing targeted therapeutic strategies. In this study, we investigate the fluorescence spectrum of a fluorogenic probe, NANQ-IMC6, when bound to the active site of human COX-2 in both its monomeric and homodimeric forms.

View Article and Find Full Text PDF

Raman spectroscopy (RS) has emerged as a novel optical imaging modality by identifying molecular species through their bond vibrations, offering high specificity and sensitivity in molecule detection. However, its application in intracellular molecular probing has been limited due to challenges in combining vibrational tags with functional probes. DNA nanostructures, known for their high programmability, have been instrumental in fields like biomedicine and nanofabrication.

View Article and Find Full Text PDF

Detecting Monkeypox Virus by Immunohistochemistry.

J Cutan Pathol

December 2024

Department of Dermatology, University of Virginia, Charlottesville, Virginia, USA.

Background: Mpox (formerly known as monkeypox), a zoonotic disease caused by Monkeypox virus (MPXV), has become an international outbreak since May 2022. Mpox often presents with a mild systemic illness and a characteristic vesiculopustular skin eruption. In addition to molecular testing, histopathology of cutaneous lesions usually shows distinctive findings, such as epidermal necrosis, balloon degeneration, papillary dermal edema, and focal dermal necrosis, which have proven helpful in the diagnosis of mpox.

View Article and Find Full Text PDF

In vitro safety evaluation of dopamine D3R antagonist, R-VK4-116, as a potential medication for the treatment of opioid use disorder.

PLoS One

December 2024

Therapeutic Development Branch, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, Maryland, United States of America.

R-VK4-116 is currently being developed as a medication to treat opioid use disorder (OUD). To characterize in vitro safety properties of R-VK4-116, metabolic stability in hepatocytes or liver microsomes, metabolite identification, metabolism/transporter-mediated drug interactions, lysosomal perturbation, mitochondrial toxicity, off-target enzyme effects, cellular and nuclear receptor functional assays, electrophysiological assays, CiPA, KINOMEscanTM, plasma protein binding, phospholipidosis and steatosis assays were performed. Overall, R-VK4-116 was metabolically stable in hepatocytes and microsomes.

View Article and Find Full Text PDF

A mitochondria-targeted fluorescent probe based on an anti-diffusion strategy for in situ imaging of fatty liver, inflammation and cancer.

Talanta

December 2024

State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, 210023, PR China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake/ Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, PR China. Electronic address:

Abnormal mitochondrial viscosity is closely associated with a wide range of diseases and cellular dysfunction. It is crucial to develop fluorescent probes for precisely monitoring changes of mitochondrial viscosity in the detection and treatment of associated diseases. However, mitochondria-targeted fluorescent probes currently faced off-target problems because their high water-solubility could hinder the accurate detection of mitochondrial viscosity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!