Following defocused ion beam sputtering, large area highly corrugated and faceted nanoripples are formed on calcite (10.4) faces in a self-organized fashion. High resolution atomic force microscopy (AFM) imaging reveals that calcite ripples are defined by facets with highly kinked (11.0) and (21¯.12) terminations.AFM imaging during the exposure of such modified calcite surfaces to PbClaqueous solution reveals that the nanostructured calcite surface promotes the uptake of Pb. In addition, we observed the progressive smoothing of the highly reactive calcite facet terminations and the formation of Pb-bearing precipitates elongated in registry with the underlying nanopattern. By SEM-EDS analysis we quantified a remarkable 500% increase of the Pb uptake rate, up to 0.5 atomic weight % per hour, on the nanorippled calcite in comparison to its freshly cleaved (10.4) surfaces. These results suggest that nanostructurated calcite surfaces can be used for developing future systems for lead sequestration from polluted waters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/acdbd4 | DOI Listing |
Eur J Dent
December 2024
Postgraduate Program of Conservative Dentistry Specialist, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
Objectives: Calcium carbonate (CaCO), a major inorganic component in bones and teeth, offers potential protection against demineralization. This study investigates the effect of CaCO from shells on the expression of fibroblast growth factor 2 (FGF2), transforming growth factor-β1 (TGF-β1), and collagen type 1 in the rat dental pulp.
Materials And Methods: The first maxillary molars of were perforated and subsequently pulp capped with CaCO extracted from shells.
Sci Rep
January 2025
Guangxi Academy of Sciences, Nanning, 530000, People's Republic of China.
It is essential to understand the modification mechanism of hydrophobicity nano-CaCO to their potential application in different fields of chemistry. However, the water absorption of hydrophobicity nano-CaCO is seldom studied. In this study, Raman, BET and TGA experiments were performed on nano-CaCO samples to obtain surfactants contents and microstructure characteristics.
View Article and Find Full Text PDFSci Rep
January 2025
Ali I. Al-Naimi Petroleum Engineering Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
Microbial impacts on early carbonate diagenesis, particularly the formation of Mg-carbonates at low temperatures, have long eluded scientists. Our breakthrough laboratory experiments with two species of halophilic aerobic bacteria and marine carbonate grains reveal that these bacteria created a distinctive protodolomite (disordered dolomite) rim around the grains. Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) confirmed the protodolomite formation, while solid-state nuclear magnetic resonance (NMR) revealed bacterial interactions with carboxylated organic matter, such as extracellular polymeric substances (EPS).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
This study aimed to evaluate the effects of nanoparticulate CaCO (NPCC) on the biological properties of calcium silicate-based cements (CSCs), including their cytotoxicity, in vitro osteogenic activity, and interactions with rat femur tissue. The average size of NPCC was 90.3±26.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China.
As common complications of diabetes, long-term hyperglycemia and inflammatory infiltration often lead to prolonged unhealing of chronic diabetic wounds. The natural hydrogel-containing plant polysaccharides were recorded to have effective hypoglycemic and anti-inflammatory effects. This study focused on the accelerating effect of diabetic wound healing of hydrogels doped with polysaccharide (DOP)─calcium carbonate (CaCO) microspheres, which have glucose-responsive insulin release and anti-inflammatory effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!