Unraveling Neonatal Sepsis: Sharper Tools Needed for Unexpected Organisms.

Clin Infect Dis

Pediatrics and Infectious Diseases, University of Nebraska Medical Center, Omaha, NE, USA.

Published: September 2023

Download full-text PDF

Source
http://dx.doi.org/10.1093/cid/ciad338DOI Listing

Publication Analysis

Top Keywords

unraveling neonatal
4
neonatal sepsis
4
sepsis sharper
4
sharper tools
4
tools needed
4
needed unexpected
4
unexpected organisms
4
unraveling
1
sepsis
1
sharper
1

Similar Publications

Background: Early life infections (ELIs), encompassing both viral and bacterial types, occur within the first six months of life. Influenced by genetic host factors and environmental conditions, the relationship between ELIs and subsequent allergic manifestations, particularly cow's milk protein allergy (CMPA) and atopic dermatitis (AD), is complex and not fully understood.

Objective: The aim of the current study was to examine the potential interplay between nutrition, infections, and allergic manifestations in the first six months of life in infants with a family history of allergies, who were either exclusively breastfed (EBF) or fed a combination of breast milk and standard (SF) or partially hydrolyzed infant formula (pHF).

View Article and Find Full Text PDF

Early neonatal seizures have myriad causes and variable prognoses. While acute symptomatic seizures are the most common events, a significant number of cases have a genetic background for such seizures, and a timely diagnosis can help in appropriate management and prognostication. We present a case of a neonate referred to our center with multi-focal clonic seizure starting from the first day of life.

View Article and Find Full Text PDF

Self-maintenance of zonal hepatocytes during adult homeostasis and their complex plasticity upon distinct liver injuries.

Cell Rep

December 2024

Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. Electronic address:

Hepatocytes are organized into distinct zonal subsets across the liver lobule, yet their contributions to liver homeostasis and regeneration remain controversial. Here, we developed multiple genetic lineage-tracing mouse models to systematically address this. We found that the liver lobule can be divided into two major zonal and molecular hepatocyte populations marked by Cyp2e1 or Gls2.

View Article and Find Full Text PDF

Childhood-onset focal epilepsy and acute para-infectious encephalopathy in a patient with biallelic QARS1 variants.

Neurol Sci

December 2024

Neurophysiopathology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.

Introduction: Biallelic variants in QARS1, a house-keeping gene involved in protein synthesis, cause a rare encephalopathy classically characterized by severe developmental delay, drug-resistant neonatal-onset epilepsy, microcephaly, and brain atrophy. We aim to raise awareness on mild QARS1-related phenotypes describing a 6-year-old patient.

Case Description: Epilepsy onset occurred at 3.

View Article and Find Full Text PDF

Kawasaki disease (KD), an acute systemic vasculitis that primarily affects children under 5 years of age, is the leading cause of acquired heart disease in this age group. Recent studies propose a novel perspective on KD's etiology, emphasizing the gastrointestinal (GI) tract, particularly the role of gut permeability. This review delves into how disruptions in gut barrier function trigger systemic inflammatory responses, exacerbate vascular inflammation, and contribute to coronary artery aneurysms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!