Appropriate cold stimulation can improve stress resistance in broilers and alleviate the adverse impacts of a cold environment. To investigate the effects of intermittent mild cold stimulation (IMCS) on energy distribution in the livers of broilers, 96 healthy 1-d-old Ross-308 male broilers were randomly divided into the control group (CC) and the cold stimulation group (H5). The CC group was raised at a normal thermal temperature, i.e., 35 °C until 3 d, after which the temperature was dropped gradually by 0.5 °C/d until 20 °C at 33 d. This temperature was maintained until 49 d. The H5 group was raised at the same temperature as the CC group until 14 d (35 to 29.5 °C) and at 3 °C below the temperature of the CC group starting at 0930 hours for 5 h every other day from 15 to 35 d (26 to 17°C). The temperature was returned to 20 °C at 36 d and maintained until 49 d. At 50 d, all broilers were subjected to acute cold stress (ACS) at 10 °C for 6 and 12 h. We found that IMCS had positive effects on production performance. Using transcriptome sequencing of the broiler livers, 327 differentially expressed genes (DEG) were identified, and highly enriched in fatty acid biosynthesis, fatty acid degradation, and the pyruvate metabolism pathway. When compared to the CC group, the mRNA levels of ACAA1, ACAT2, ACSL1, CPT1A, LDHB, and PCK1 in the H5 group were increased at 22 d (P < 0.05). The LDHB mRNA level was upregulated in the H5 group at 29 d compared to the CC group (P < 0.05). After 21 d of IMCS (at 36 d), the mRNA expression levels of ACAT2 and PCK1 were found to be significantly increased in the H5 group compared to the CC group (P < 0.05). Seven days after the IMCS had ended (at 43 d), the mRNA levels of ACAA1, ACAT2, and LDHB in the H5 group were higher than in the CC group (P < 0.05). The mRNA levels of heat shock protein (HSP) 70, HSP90, and HSP110 in the H5 group were higher than in the CC group after 6 h of ACS (P < 0.05). The protein levels of HSP70 and HSP90 in the H5 group were downregulated after 12 h of ACS, compared to the CC group (P < 0.05). These results indicated that IMCS at 3 °C lower than the normal temperature could improve energy metabolism and stress resistance in the livers of broilers, alleviate the damage of short-term ACS on broilers, help broilers adapt to the low temperature, and maintain stable of energy metabolism in the body.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10276644PMC
http://dx.doi.org/10.1093/jas/skad185DOI Listing

Publication Analysis

Top Keywords

cold stimulation
16
°c temperature
12
appropriate cold
8
energy distribution
8
improve stress
8
stress resistance
8
resistance broilers
8
group
8
group raised
8
temperature group
8

Similar Publications

Facile integration of a binary nano-prodrug with αPD-L1 as a translatable technology for potent immunotherapy of TNBC.

Acta Biomater

January 2025

Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China. Electronic address:

Immune checkpoint blockers (ICBs)-based immunotherapy is a favorable approach for efficient triple-negative breast cancer (TNBC) treatment. However, the therapeutic efficacy of ICBs is greatly compromised by immunosuppressive tumor microenvironments (TMEs) and low expression levels of programmed cell death ligand-1 (PD-L1). Herein, we constructed an amphiphilic prodrug by linking a hydrophobic STING agonist, MSA-2 and a hydrophilic chemotherapeutic drug, gemcitabine (GEM) via an ester bond, which can self-assemble into GEM-MSA-2 (G-M) nanoparticles (NPs) with a tumor growth inhibition (TGI) value of 87.

View Article and Find Full Text PDF

Background: It is known that subclinical hypothyroidism (SCH) often converts to euthyroidism. However, the mechanism of such changes is unclear and can only be speculated. This difficulty is likely due to limitations in diagnostic guidelines and their interpretation.

View Article and Find Full Text PDF

This study compared the effects of seed treatment with low-pressure cold plasma (CP) and atmospheric dielectric barrier discharge (DBD) plasma on morpho-biochemical traits in Bertoni plants cultivated by two methods: in soil and aeroponics. We investigated the impact of the treatments on the germination, plant growth, and content of secondary metabolites, namely steviol glycosides (SGs), rebaudioside A (RebA), and stevioside (Stev), as well as phenolic compounds and flavonoids. Seeds were treated for 2, 5, and 7 min with CP or DBD and 5 min with vacuum six days before sowing.

View Article and Find Full Text PDF

Low-temperature (LT) stress seriously affects the distribution, seedling survival, and grain yield of maize. At the seedling emergence stage, maize's coleoptile is one of the most sensitive organs in sensing LT signaling and, in general, it can envelop young leaves to protect them from LT damage. In addition, brassinolides (BRs) have been shown to enhance LT tolerance from various species, but the effects of BRs on coleoptiles in maize seedlings under LT stress are unclear.

View Article and Find Full Text PDF

Homeobox C4 transcription factor promotes adipose tissue thermogenesis.

Diabetes

January 2025

Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.

The homeobox (HOX) family has shown potential in adipose development and function, yet the specific HOX proteins fueling adipose thermogenesis remain elusive. In this study, we uncovered the novel function of HOXC4 in stimulating adipose thermogenesis. Our bioinformatic analysis indicated an enrichment of Hoxc4 co-expressed genes in metabolic pathways and linked HOXC4 polymorphisms to metabolic parameters, suggesting its involvement in metabolic regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!