Introduction: Keratoconus (KC) is an ocular disorder with a multifactorial origin. Transcriptomic analyses (RNA-seq) revealed deregulations of coding (mRNA) and non-coding RNAs (ncRNAs) in KC, suggesting that mRNA-ncRNA co-regulations can promote the onset of KC. The present study investigates the modulation of RNA editing mediated by the adenosine deaminase acting on dsRNA (ADAR) enzyme in KC.

Materials: The level of ADAR-mediated RNA editing in KC and healthy corneas were determined by two indexes in two different sequencing datasets. REDIportal was used to localize known editing sites, whereas new putative sites were de novo identified in the most extended dataset only and their possible impact was evaluated. Western Blot analysis was used to measure the level of ADAR1 in the cornea from independent samples.

Results: KC was characterized by a statistically significant lower RNA-editing level compared to controls, resulting in a lower editing frequency, and less edited bases. The distribution of the editing sites along the human genome showed considerable differences between groups, particularly relevant in the chromosome 12 regions encoding for Keratin type II cluster. A total of 32 recoding sites were characterized, 17 representing novel sites. JUP, KRT17, KRT76, and KRT79 were edited with higher frequencies in KC than in controls, whereas BLCAP, COG3, KRT1, KRT75, and RRNAD1 were less edited. Both gene expression and protein levels of ADAR1 appeared not regulated between diseased and controls.

Conclusions: Our findings demonstrated an altered RNA-editing in KC possibly linked to the peculiar cellular conditions. The functional implications should be further investigated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10249681PMC
http://dx.doi.org/10.1167/iovs.64.7.12DOI Listing

Publication Analysis

Top Keywords

rna editing
12
editing sites
8
editing
6
sites
5
meta-analysis keratoconus
4
keratoconus transcriptomic
4
transcriptomic data
4
data revealed
4
revealed altered
4
altered rna
4

Similar Publications

Dual α-globin-truncated erythropoietin receptor knockin restores hemoglobin production in α-thalassemia-derived erythroid cells.

Cell Rep

January 2025

Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address:

The most severe form of α-thalassemia results from loss of all four copies of α-globin. Postnatally, patients face challenges similar to β-thalassemia, including severe anemia and erythrotoxicity due to the imbalance of β-globin and α-globin chains. Despite progress in genome editing treatments for β-thalassemia, there is no analogous curative option for α-thalassemia.

View Article and Find Full Text PDF

KDM6A facilitates Xist upregulation at the onset of X inactivation.

Biol Sex Differ

January 2025

Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.

Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.

View Article and Find Full Text PDF

Background: Adenosine deaminase action on RNA 1 (ADAR1) can convert the adenosine in double-stranded RNA (dsRNA) molecules into inosine in a process known as A-to-I RNA editing. ADAR1 regulates gene expression output by interacting with RNA and other proteins; plays important roles in development, including growth; and is linked to innate immunity, tumors, and central nervous system (CNS) diseases.

Results: In recent years, the role of ADAR1 in tumors has been widely discussed, but its role in CNS diseases has not been reviewed.

View Article and Find Full Text PDF

Comprehensive characterization of the transcriptional landscape in Alzheimer's disease (AD) brains.

Sci Adv

January 2025

Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.

Alzheimer's disease (AD) is the leading dementia among the elderly with complex origins. Despite extensive investigation into the AD-associated protein-coding genes, the involvement of noncoding RNAs (ncRNAs) and posttranscriptional modification (PTM) in AD pathogenesis remains unclear. Here, we comprehensively characterized the landscape of ncRNAs and PTM events in 1460 samples across six brain regions sourced from the Mount Sinai/JJ Peters VA Medical Center Brain Bank Study and Mayo cohorts, encompassing 33,321 long ncRNAs, 92,897 enhancer RNAs, 53,763 alternative polyadenylation events, and 900,221 A-to-I RNA editing events.

View Article and Find Full Text PDF

Homozygous Familial Hypercholesterolemia Treatment: New Developments.

Curr Atheroscler Rep

January 2025

Carbohydrate and Lipid Metabolism Research Unit, Department of Medicine, University of the Witwatersrand, Johannesburg, South Africa.

Purpose Of Review: Homozygous familial hypercholesterolaemia (HoFH) is characterized by marked elevation of low-density lipoprotein cholesterol (LDLC) and premature atherosclerotic cardiovascular disease. This is a review of novel pharmacological therapies to lower LDLC in patients with HoFH.

Recent Findings: Novel therapies can be broadly divided by whether their efficacy is dependent or independent of residual low-density lipoprotein receptor (LDLR) function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!