The intrinsic heterogeneity of many nanoformulations is currently challenging to characterize on both the single particle and population level. Therefore, there is great opportunity to develop advanced techniques to describe and understand nanomedicine heterogeneity, which will aid translation to the clinic by informing manufacturing quality control, characterization for regulatory bodies, and connecting nanoformulation properties to clinical outcomes to enable rational design. Here, we present an analytical technique to provide such information, while measuring the nanocarrier and cargo simultaneously with label-free, nondestructive single particle automated Raman trapping analysis (SPARTA). We first synthesized a library of model compounds covering a range of hydrophilicities and providing distinct Raman signals. These compounds were then loaded into model nanovesicles (polymersomes) that can load both hydrophobic and hydrophilic cargo into the membrane or core regions, respectively. Using our analytical framework, we characterized the heterogeneity of the population by correlating the signal per particle from the membrane and cargo. We found that core and membrane loading can be distinguished, and we detected subpopulations of highly loaded particles in certain cases. We then confirmed the suitability of our technique in liposomes, another nanovesicle class, including the commercial formulation Doxil. Our label-free analytical technique precisely determines cargo location alongside loading and release heterogeneity in nanomedicines, which could be instrumental for future quality control, regulatory body protocols, and development of structure-function relationships to bring more nanomedicines to the clinic.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311594 | PMC |
http://dx.doi.org/10.1021/acsnano.3c02452 | DOI Listing |
Viruses
December 2024
Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
Coliphage N4 is a representative species of the family of bacteriophages. Originally structurally studied in 2008, the capsid structure was solved to 14 Å to reveal an interesting arrangement of Ig-like decoration proteins across the surface of the capsid. Herein, we present a high-resolution N4 structure, reporting a 2.
View Article and Find Full Text PDFPharmaceutics
January 2025
College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea.
/: Inhaler devices have been developed for the effective delivery of inhaled medications used in the treatment of pulmonary diseases. However, differing operating procedures across the devices can lead to user errors and reduce treatment efficacy, especially when patients use multiple devices simultaneously. To address this, we developed a novel dry powder inhaler (DPI), combining fluticasone propionate (FP), salmeterol xinafoate (SX), and tiotropium bromide (TB) into a single device designed for bioequivalent delivery compared to existing commercial products in an animal model.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Łukasiewicz Research Network-Poznań Institute of Technology, Ewarysta Estkowskiego 6, 61-755 Poznan, Poland.
With rising demand for wood products and reduced wood harvesting due to the European Green Deal, alternative lignocellulosic materials for insulation are necessary. In this work, we manufactured reference particleboard from industrial particles and fifteen different board variants from alternative lignocellulosic plants material, i.e.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China.
To achieve resourceful utilization of dredged sludge, lightweight treatment was performed on sludge from Xunsi River in Wuhan using fly ash, cement, and expanded polystyrene (EPS) particles. Density tests and unconfined compressive strength (UCS) tests were conducted on the composite stabilized sludge lightweight soil to determine the optimal mix ratio for high-quality roadbed fill material with low self-weight and high strength. Subsequently, microstructural tests, including X-ray diffraction (XRD) and scanning electron microscopy (SEM), were conducted.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Materials Science and Engineering, National Dong Hwa University, Hualien 974301, Taiwan.
This work proposes dye-sensitized solar cells (DSSCs) with various photoanode designs. A hydrothermal method is used to synthesize hydrangea-shaped TiO (H-TiO) aggregates. The X-ray diffraction (XRD) pattern of H-TiO reveals only an anatase phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!