Neonatal hypoxic-ischemic encephalopathy (HIE) is the main cause of neonatal death and disability worldwide. At present, there are few researches on the application of resting-state functional magnetic resonance imaging (rs-fMRI) to explore the brain development of HIE children. This study aimed to explore the changes of brain function in neonates with different degrees of HIE using rs-fMRI. From February 2018 to May 2020, 44 patients with HIE were recruited, including 21 mild patients and 23 moderate and severe patients. The recruited patients were scanned by conventional and functional magnetic resonance image, and the method of amplitude of low-frequency fluctuation and connecting edge analysis of brain network was used. Compared with the mild group, the connections between the right supplementary motor area and the right precentral gyrus, the right lingual gyrus and the right hippocampus, the left calcarine cortex and the right amygdala, and the right pallidus and the right posterior cingulate cortex in the moderate and severe groups were reduced ( values were 4.04, 4.04, 4.04, 4.07, all  < 0.001, uncorrected). By analyzing the functional connection changes of brain network in infants with different degrees of HIE, the findings of the current study suggested that neonates with moderate to severe HIE lag behind those with mild HIE in emotional processing, sensory movement, cognitive function, and learning and memory. ChiCTR1800016409.

Download full-text PDF

Source
http://dx.doi.org/10.1089/brain.2022.0073DOI Listing

Publication Analysis

Top Keywords

brain network
8
neonates degrees
8
hypoxic-ischemic encephalopathy
8
functional magnetic
8
magnetic resonance
8
moderate severe
8
404 404
8
changes functional
4
brain
4
functional brain
4

Similar Publications

Background: Stereotactic radiosurgery (SRS) is widely used for managing brain metastases (BMs), but an adverse effect, radionecrosis, complicates post-SRS management. Differentiating radionecrosis from tumor recurrence non-invasively remains a major clinical challenge, as conventional imaging techniques often necessitate surgical biopsy for accurate diagnosis. Machine learning and deep learning models have shown potential in distinguishing radionecrosis from tumor recurrence.

View Article and Find Full Text PDF

Insulin plays a key role in metabolic homeostasis. insulin-producing cells (IPCs) are functional analogues of mammalian pancreatic beta cells and release insulin directly into circulation. To investigate the in vivo dynamics of IPC activity, we quantified the effects of nutritional and internal state changes on IPCs using electrophysiological recordings.

View Article and Find Full Text PDF

Accurate metacognitive judgments about an individual's performance in a mental task require the brain to have access to representations of the quality and difficulty of first-order cognitive processes. However, little is known about how accurate metacognitive judgments are implemented in the brain. Here, we combine brain stimulation with functional neuroimaging to determine the neural and psychological mechanisms underlying the frontopolar cortex's (FPC) role in metacognition.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a progressive neurodegenerative condition with rising prevalence due to the aging global population. Existing methods for diagnosing AD are struggling to detect the condition in its earliest and most treatable stages. One early indicator of AD is a substantial decrease in the brain's glucose metabolism.

View Article and Find Full Text PDF

Hypomanic personality traits (HPT) are susceptibility markers for psychiatric disorders, particularly bipolar disorder, and are strongly associated with aggressive behaviors. However, the neuropsychological mechanisms underlying this association remain unclear. This study utilized psychometric network analysis and (IS-RSA) to explore the neuropsychological circuits that link HPT to aggression in a large non-clinical population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!