Background: To evaluate the degeneration of the corticospinal tract (CST) and corpus callosum (CC) in patients with motor neuron disease and upper motor neuron (UMN) dysfunction using diffusion kurtosis imaging (DKI).
Methods: Twenty-seven patients and 33 healthy controls underwent magnetic resonance imaging along with clinical and neuropsychological testing. Tractography of diffusion tensor images was performed to extract tracts of the bilateral CST and CC. Group mean differences both across the entire averaged tract and along each tract were assessed, including correlations between diffusion metrics and clinical measures. Tract-based spatial statistics (TBSS) was performed to evaluate the spatial distribution of whole-brain microstructural abnormalities in patients.
Results: In comparison to controls, patients had significantly higher mean and radial diffusivity and lower fractional anisotropy (FA), kurtosis anisotropy, mean kurtosis (MK), and radial kurtosis (RK) in the CST and CC (p < .017). Along-the-tract analysis revealed changes concentrated in the posterior limb of the internal capsule, corona radiata, and primary motor cortex (false-discovery rate p < .05). FA of the left CST correlated with disease progression rate, whereas MK of the bilateral CST correlated with UMN burden (p < .01). TBSS results corroborated along-tract analysis findings and additionally revealed reduced RK and MK in the fornix, where diffusion tensor imaging (DTI) changes were absent.
Conclusion: DKI abnormalities in the CST and CC are present in patients with UMN dysfunction, potentially revealing complementary information to DTI regarding the pathology and microstructural alterations occurring in such patients. DKI shows promise as a potential in vivo biomarker for cerebral degeneration in amyotrophic lateral sclerosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10338744 | PMC |
http://dx.doi.org/10.1002/brb3.3102 | DOI Listing |
Alzheimers Dement
December 2024
NYU Grossman School of Medicine, New York, NY, USA.
Background: We examined racial differences between measures of limbic white matter tracts and objective sleep parameters in cognitively unimpaired older-adults.
Method: This cross-sectional study included 170 community-dwelling cognitively unimpaired older-adults (mean±SD: age = 67.2±5.
Acad Radiol
December 2024
Mallinckrodt Institute of Radiology, Washington University in Saint Louis, St. Louis, MO (A.N.). Electronic address:
Brain Behav
January 2025
Department of Radiology, Liuzhou Worker's Hospital, Guangxi, China.
Background: Adult glioblastomas (GBMs) are associated with high recurrence and mortality. Personalized treatment based on molecular markers may help improve the prognosis. We aimed to evaluate whether apparent diffusion coefficient (ADC) histogram analysis can better predict MGMT and TERT molecular characteristics and to determine the prognostic relevance of genetic profile in patients with GBM.
View Article and Find Full Text PDFSci Rep
December 2024
The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, 030012, Shanxi, People's Republic of China.
This study investigated the use of bi-exponential diffusion-weighted imaging (DWI) combined with structural features to differentiate high-grade glioma (HGG) from solitary brain metastasis (SBM). A total of 57 patients (31 HGG, 26 SBM) who underwent pre-surgical multi-b DWI and structural MRI (T1W, T2W, T1W + C) were included. Volumes of interest (VOI) in the peritumoral edema area (PTEA) and enhanced tumor area (ETA) were selected for analysis.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
This study aimed to establish and validate a multiparameter prediction model for Ki67 expression in hepatocellular carcinoma (HCC) patients while also exploring its potential to predict the one-year recurrence risk. The clinical, pathological, and imaging data of 83 patients with HCC confirmed by postoperative pathology were analyzed, and the patients were randomly divided into a training set (n = 58) and a validation set (n = 25) at a ratio of 7:3. All patients underwent a magnetic resonance imaging (MRI) scan that included multi-b value diffusion-weighted scanning before surgery, and quantitative parameters were obtained via intravoxel incoherent motion (IVIM) and diffusion kurtosis (DKI) models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!