Polypharmacology is an emerging strategy of design, synthesis, and clinical implementation of pharmaceutical agents that act on multiple targets simultaneously. It should not be mixed up with polytherapy, which is based on the use of multiple selective drugs and is considered a cornerstone of current clinical practice. However, this 'classic' approach, when facing urgent medical challenges, such as multifactorial diseases, increasing resistance to pharmacotherapy, and multimorbidity, seems to be insufficient. The 'novel' polypharmacology concept leads to a more predictable pharmacokinetic profile of multi-target-directed ligands (MTDLs), giving a chance to avoid drug-drug interactions and improve patient compliance due to the simplification of dosing regimens. Plenty of recently marketed drugs interact with multiple biological targets or disease pathways. Many offer a significant additional benefit compared to the standard treatment regimens. In this paper, we will briefly outline the genesis of polypharmacology and its differences to polytherapy. We will also present leading concepts for obtaining MTDLs. Subsequently, we will describe some successfully marketed drugs, the mechanisms of action of which are based on the interaction with multiple targets. To get an idea, of whether MTDLs are indeed important in contemporary pharmacology, we also carefully analyzed drugs approved in 2022 in Germany: 10 out of them were found multi-targeting, including 7 antitumor agents, 1 antidepressant, 1 hypnotic, and 1 drug indicated for eye disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243259 | PMC |
http://dx.doi.org/10.1007/s43440-023-00501-4 | DOI Listing |
Importance: This article highlights key National Institutes of Health (NIH) programs, policies, and scientific advances that have informed and improved the health of women and describe the promise and potential of harnessing cutting-edge science and integrative approaches to advance women's health research. Policy updates combined with recent scientific and programmatic initiatives are intended to expand understanding of women's health, deliver diagnostics, and develop preventive approaches and novel therapies to meet critical health needs of contemporary women.
Observations: To benefit all people through the work funded and conducted by the NIH biomedical research enterprise, NIH has implemented policies that broadly expanded the knowledge of human health and disease from the laboratory to the clinic.
Nanoscale
January 2025
McMaster University, Department of Engineering Physics, Hamilton, ON M8S 4K1, Canada.
Photoresponsive drug delivery systems have great potential for improved cancer therapy. However, most of the currently available drug-delivery nanosystems are relatively large and require light excitation with low tissue penetration. Here, we designed a near infrared responsive drug delivery system by loading [Ru(terpyridine)(dipyridophenazine)(HO)] (Ru(tpy)DPPZ) in azobenzene-modified mesoporous silica coated NaGdF:Nd/Yb/Tm upconversion nanoparticles (azo-mSiO-UCNPs).
View Article and Find Full Text PDFHepatol Commun
November 2024
Human Immunology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia.
Background: HCC develops in the context of chronic inflammation; however, the opposing roles the immune system plays in both the development and control of tumors are not fully understood. Mapping immune cell interactions across the distinct tissue regions could provide greater insight into the role individual immune populations have within tumors.
Methods: A 39-parameter imaging mass cytometry panel was optimized with markers targeting immune cells, stromal cells, endothelial cells, hepatocytes, and tumor cells.
Appl Biochem Biotechnol
January 2025
Computational Biology Lab, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Tamil Nadu, India.
JAK1, a key regulator of multiple oncogenic pathways, is a sought-out target, and its expression in immune cells and tumour-infiltrating lymphocytes (TILs) is associated with a favorable prognosis in breast cancer. JAK1 activates IL-6 via ERBB2 receptor tyrosine kinase signalling and promotes metastatic cancer and STAT3 activation in breast cancer cells. Hence, targeting JAK1 in breast cancer is being explored as a potential therapeutic strategy.
View Article and Find Full Text PDFRadiat Environ Biophys
January 2025
Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India.
Radiation therapy (RT) is fundamental to the fight against cancer because of its exceptional ability to target and destroy cancer cells. However, conventional radiation therapy can significantly affect the adjacent normal tissues, leading to fibrosis, inflammation, and decreased organ function. This tissue damage not only reduces the quality of life but also prevents the total elimination of cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!