Enterococcus faecalis is a Gram-positive bacterium that natively colonizes the human gastrointestinal tract and opportunistically causes life-threatening infections. Multidrug-resistant (MDR) E. faecalis strains have emerged that are replete with mobile genetic elements (MGEs). Non-MDR E. faecalis strains frequently possess CRISPR-Cas systems, which reduce the frequency of MGE acquisition. We demonstrated in previous studies that E. faecalis populations can transiently maintain both a functional CRISPR-Cas system and a CRISPR-Cas target. In this study, we used serial passage and deep sequencing to analyze these populations. In the presence of antibiotic selection for the plasmid, mutants with compromised CRISPR-Cas defense and enhanced ability to acquire a second antibiotic resistance plasmid emerged. Conversely, in the absence of selection, the plasmid was lost from wild-type E. faecalis populations but not E. faecalis populations that lacked the gene. Our results indicate that E. faecalis CRISPR-Cas can become compromised under antibiotic selection, generating populations with enhanced abilities to undergo horizontal gene transfer. Enterococcus faecalis is a leading cause of hospital-acquired infections and disseminator of antibiotic resistance plasmids among Gram-positive bacteria. We have previously shown that E. faecalis strains with an active CRISPR-Cas system can prevent plasmid acquisition and thus limit the transmission of antibiotic resistance determinants. However, CRISPR-Cas is not a perfect barrier. In this study, we observed populations of E. faecalis with transient coexistence of CRISPR-Cas and one of its plasmid targets. Our experimental data demonstrate that antibiotic selection results in compromised E. faecalis CRISPR-Cas function, thereby facilitating the acquisition of additional resistance plasmids by E. faecalis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304774 | PMC |
http://dx.doi.org/10.1128/aem.00124-23 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!