Download full-text PDF |
Source |
---|
Phys Rev Lett
December 2024
Univ Coimbra, Faculdade de Ciências e Tecnologia da Universidade de Coimbra and CFisUC, Rua Larga, 3004-516 Coimbra, Portugal.
The search for primordial black holes (PBHs) with masses M≪M_{⊙} is motivated by natural early-Universe production mechanisms and that PBHs can be dark matter. For M≲10^{14} kg, the PBH density is constrained by null searches for their expected Hawking emission (HE), the characteristics of which are, however, sensitive to new states beyond the standard model. If there exists a large number of spin-0 particles in nature, PBHs can, through HE, develop and maintain non-negligible spins, modifying the visible HE.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Department of Biomedical Engineering, Washington University in St. Louis; Department of Obstetrics & Gynecology, Washington University in St. Louis;
For noninvasive light-based physiological monitoring, optimal wavelengths of individual tissue components can be identified using absorption spectroscopy. However, because of the lack of sensitivity of hardware at longer wavelengths, absorption spectroscopy has typically been applied for wavelengths in the visible (VIS) and near-infrared (NIR) range from 400 to 1,000 nm. Hardware advancements in the short-wave infrared (SWIR) range have enabled investigators to explore wavelengths in the ~1,000 nm to 3,000 nm range in which fall characteristic absorption peaks for lipid, protein, and water.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
Urban Construction Center of Lucheng District of Wenzhou, Wenzhou, 325000, China.
The identification of vibration and reconstruction of sound fields of plate structures are important for understanding the vibroacoustic characteristics of complex structures. This paper presents a data-physics driven (DPD) model integrated with transfer learning (DPDT) for high-precision identification and reconstruction of vibration and noise radiation of plate structures. The model combines the Kirchhoff-Helmholtz integral equation with convolutional neural networks, leveraging physical information to reduce the need for extensive data.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Shaanxi Key Laboratory of Artificially Structured Functional Materials and Devices, Airforce Engineering University, Xi'an, Shaanxi, 710051, China.
The integrated modulation of radiation and scattering provides an unprecedented opportunity to reduce the number of electromagnetic (EM) apertures in the platform while simultaneously enhancing communication and stealth performance. Nevertheless, achieving full-polarization, arbitrary amplitude, and phase modulation of radiation scattering remains a challenge. In this paper, a strategy that realizes space-time coding of radiation scattering within the same frequency band, which enables the simultaneous and independent modulation of amplitude and phase, is proposed.
View Article and Find Full Text PDFInt J Surg
January 2025
Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.
Background: Adopting appropriate noninvasive radiological method is crucial for periodic surveillance of liver metastases in colorectal cancer (CRC) patients after surgery, which is closely related to clinical management and prognosis. This study aimed to prospectively enroll stage II-III CRC patients for the surveillance of liver metastases, and compare the diagnostic performance of contrast-enhanced CT (CE-CT) and non-enhanced abbreviated MRI (NE-AMRI) during this process.
Methods: 587 CRC patients undergoing radical resection of the primary tumor were evaluated by 1 to 3 rounds of surveillance tests, consisting of abdominal CE-CT and contrast-enhanced MRI (CE-MRI) within 7 days at 6-month intervals.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!