Genetic code expansion via amber suppression allows cotranslational, site-specific introduction of nonnatural chemical groups into proteins in the living cell. The archaeal pyrrolysine-tRNA/pyrrolysine-tRNA synthetase (PylT/RS) pair from Methanosarcina mazei (Mma) has been established for incorporation of a wide range of noncanonical amino acids (ncAAs) in mammalian cells. Once integrated in an engineered protein, ncAAs allow for simple click-chemistry derivatization, photo-cage control of enzyme activity, and site-specific placement of posttranslational modifications. We previously described a modular amber suppression plasmid system for generating stable cell lines via piggyBac transposition in a range of mammalian cells. Here we detail a general protocol for the generation of CRISPR-Cas9 knock-in cell lines using the same plasmid system. The knock-in strategy relies on CRISPR-Cas9-induced double-strand breaks (DSBs) and nonhomologous end joining (NHEJ) repair to target the PylT/RS expression cassette to the AAVS1 safe harbor locus in human cells. MmaPylRS expression from this single locus is sufficient for efficient amber suppression when the cells are subsequently transfected transiently with a PylT/gene of interest plasmid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3251-2_12 | DOI Listing |
ACS Infect Dis
January 2025
Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.
RNA viruses possess small genomes encoding a limited repertoire of essential and often multifunctional proteins. Although genetically tagging viral proteins provides a powerful tool for dissecting mechanisms of viral replication and infection, it remains a challenge. Here, we leverage genetic code expansion to develop a recoded strain of respiratory syncytial virus (RSV) in which the multifunctional nucleoprotein is site-specifically modified with a noncanonical amino acid.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227, Dortmund, Germany.
Ubiquitination is a dynamic post-translational modification governing protein abundance, function, and localization in eukaryotes. The Ubiquitin protein is conjugated to lysine residues of target proteins, but can also repeatedly be ubiquitinated itself, giving rise to a complex code of ubiquitin chains with different linkage types. To enable studying the cellular dynamics of linkage-specific ubiquitination, light-activatable polyubiquitin chain formation is reported here.
View Article and Find Full Text PDFIn brain activity mapping with optogenetics, patterned illumination is crucial for targeted neural stimulation. However, due to optical scattering in brain tissue, light-emitting implants are needed to bring patterned illumination to deep brain regions. A promising solution is silicon neural probes with integrated nanophotonic circuits that form tailored beam patterns without lenses.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Materials Science, University of Tsukuba, Tsukuba 305-8573, Ibaraki, Japan.
Amber is a fragile (in Angell's classification) natural glass that has performed maturation processes over geological time. The terahertz dynamics of Baltic amber that was about 40 million years old were studied by terahertz time-domain spectroscopy (THz-TDS) in the frequency range of 0.2 and 6.
View Article and Find Full Text PDFCatal Sci Technol
November 2024
Department of Chemistry, Boston University Boston Massachusetts 02215 USA
α-Ketoglutarate-dependent non-haem iron (αKG-NHFe) enzymes play a crucial role in natural product biosynthesis, and in some cases exhibiting multifunctional catalysis capability. This study focuses on αKG-NHFe enzyme FtmOx1, which catalyzes endoperoxidation, dealkylation, and alcohol oxidation reactions in verruculogen biosynthesis. We explore the hypothesis that the conformational dynamics of the active site Y224 confer the multifunctional activities of FtmOx1-catalysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!