Telomeric sequences, the structures comprised of hexanucleotide repeats and associated proteins, play a pivotal role in chromosome end protection and preservation of genomic stability. Herein we address telomere length (TL) dynamics in primary colorectal cancer (CRC) tumour tissues and corresponding liver metastases. TL was measured by multiplex monochrome real-time qPCR in paired samples of primary tumours and liver metastases along with non-cancerous reference tissues obtained from 51 patients diagnosed with metastatic CRC. Telomere shortening was observed in the majority of primary tumour tissues compared to non-cancerous mucosa (84.1%, p < 0.0001). Tumours located within the proximal colon had shorter TL than those in the rectum (p < 0.05). TL in liver metastases was not significantly different from that in primary tumours (p = 0.41). TL in metastatic tissue was shorter in the patients diagnosed with metachronous liver metastases than in those diagnosed with synchronous liver metastases (p = 0.03). The metastatic liver lesions size correlated with the TL in metastases (p < 0.05). Following the neoadjuvant treatment, the patients with rectal cancer had shortened telomeres in tumour tissue than prior to the therapy (p = 0.01). Patients with a TL ratio between tumour tissue and the adjacent non-cancerous mucosa of ≥ 0.387 were associated with increased overall survival (p = 0.01). This study provides insights into TL dynamics during progression of the disease. The results show TL differences in metastatic lesions and may help in clinical practice to predict the patient's prognosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241861PMC
http://dx.doi.org/10.1038/s41598-023-35835-9DOI Listing

Publication Analysis

Top Keywords

telomere length
8
colorectal cancer
8
tumour tissues
8
liver metastases
8
dynamics telomere
4
primary
4
length primary
4
primary metastatic
4
metastatic colorectal
4
cancer lesions
4

Similar Publications

Aims: High telomerase activity has been detected in over 85 % of tumors, with the activation of hTERT being the most crucial mechanism for re-establishing telomerase activity. Activation of hTERT maintains telomere length in cells, enabling cancer cells to proliferate indefinitely. Nevertheless, the specific mechanism of telomerase activation in non-small cell lung cancer (NSCLC) remains unclear, and post-transcriptional regulation of hTERT could be a potential activation mechanism.

View Article and Find Full Text PDF

Batrachochytrium dendrobatidis (Bd) is responsible for mass extinctions and extirpations of amphibians, mainly driven by the Global Panzootic Lineage (BdGPL). BdGPL isolate JEL423 is a commonly used reference strain in studies exploring the evolution, epidemiology and pathogenicity of chytrid pathogens. These studies have been hampered by the fragmented, erroneous and incomplete B.

View Article and Find Full Text PDF

Telomerase-based vaccines: a promising frontier in cancer immunotherapy.

Cancer Cell Int

December 2024

Department of Chemistry, Lahijan Branch, Islamic Azad University, Lahijan, Iran.

Telomerase, an enzyme crucial for maintaining telomere length, plays a critical role in cellular immortality and is overexpressed in most cancers. This ubiquitous presence makes telomerase, and specifically its catalytic subunit, human telomerase reverse transcriptase (hTERT), an attractive target for cancer immunotherapy. This review explores the development and application of telomerase-based vaccines, focusing on DNA and peptide-based approaches.

View Article and Find Full Text PDF

Objective: . Despite the establishment of a link between telomere status and carcinogenesis, lack of a consensus in the cancer specific pattern of telomere length has a severe impact on the use of relative telomere length (RTL) in cancer diagnosis. The disparity in assessing the relationship between telomere length and cancer risk is complex and may vary as it is influenced by other factors.

View Article and Find Full Text PDF

: Human fetal liver hematopoietic stem cells have proven potential as therapeutics but lack extensive research due to their limited supply. Even expanded fetal liver hematopoietic stem cells enter senescence or lose their self-renewal capacity after a few days in culture. The present study aimed to obtain a homogeneous and persistent supply of hematopoietic stem cells from the fetal liver by establishing a cell line through immortalization of cells by enhancing telomerase activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!