AI Article Synopsis

  • - Cancer is a major global health issue, and there's a pressing need for new, effective anticancer treatments due to limitations of current drugs.
  • - Epidithiodiketopiperazine (ETP) alkaloids, derived from fungi and characterized by their unique sulfur structures, show significant anticancer activity by impacting various cancer-related pathways and processes.
  • - The review discusses the anticancer potential of ETP alkaloids, how modifying their structures can enhance their effectiveness, and the development of synthetic methods to overcome supply challenges from natural sources.

Article Abstract

Cancer has become a grave health crisis that threatens the lives of millions of people worldwide. Because of the drawbacks of the available anticancer drugs, the development of novel and efficient anticancer agents should be encouraged. Epidithiodiketopiperazine (ETP) alkaloids with a 2,5-diketopiperazine (DKP) ring equipped with transannular disulfide or polysulfide bridges or S-methyl moieties constitute a special subclass of fungal natural products. Owing to their privileged sulfur units and intriguing architectural structures, ETP alkaloids exhibit excellent anticancer activities by regulating multiple cancer proteins/signaling pathways, including HIF-1, NF-κB, NOTCH, Wnt, and PI3K/AKT/mTOR, or by inducing cell-cycle arrest, apoptosis, and autophagy. Furthermore, a series of ETP alkaloid derivatives obtained via structural modification showed more potent anticancer activity than natural ETP alkaloids. To solve supply difficulties from natural resources, the total synthetic routes for several ETP alkaloids have been designed. In this review, we summarized several ETP alkaloids with anticancer properties with particular emphasis on their underlying mechanisms of action, structural modifications, and synthetic strategies, which will offer guidance to design and innovate potential anticancer drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2023.106642DOI Listing

Publication Analysis

Top Keywords

etp alkaloids
20
potential anticancer
8
anticancer agents
8
mechanisms action
8
action structural
8
structural modification
8
synthetic strategies
8
anticancer drugs
8
anticancer
7
alkaloids
6

Similar Publications

Homoharringtonine synergizes with venetoclax in early T cell progenitor acute lymphoblastic leukemia: Bench and bed.

Med

December 2024

Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China. Electronic address:

Background: Early T cell precursor acute lymphoblastic leukemia (ETP-ALL) is a distinct subtype of T-ALL with a poor prognosis. To find a cure, we examined the synergistic effect of homoharringtonine (HHT) in combination with the BCL-2 inhibitor venetoclax (VEN) in ETP-ALL.

Methods: Using in vitro cellular assays and ETP-ALL xenograft models, we first investigated the synergistic activity of HHT and VEN in ETP-ALL.

View Article and Find Full Text PDF

Covering: 1970 through June of 2023Verticillins are epipolythiodioxopiperazine (ETP) alkaloids, many of which possess potent, nanomolar-level cytotoxicity against a variety of cancer cell lines. Over the last decade, their activity and mode of action have been explored in detail. Notably, recent studies have indicated that these compounds may be selective inhibitors of histone methyltransferases (HMTases) that alter the epigenome and modify targets that play a crucial role in apoptosis, altering immune cell recognition, and generating reactive oxygen species.

View Article and Find Full Text PDF

Formation of Bridged Disulfide in Epidithiodioxopiperazines.

Chembiochem

March 2024

State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.

Epidithiodioxopiperazine (ETP) alkaloids, featuring a 2,5-diketopiperazine core and transannular disulfide bridge, exhibit a broad spectrum of biological activities. However, the structural complexity has prevented efficient chemical synthesis and further clinical research. In the past few decades, many achievements have been made in the biosynthesis of ETPs.

View Article and Find Full Text PDF

Development of constitutively synergistic nanoformulations to enhance chemosensitivity in T-cell leukemia.

J Control Release

September 2023

Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA; Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA. Electronic address:

Advances in multiagent chemotherapy have led to recent improvements in survival for patients with acute lymphoblastic leukemia (ALL); however, a significant fraction do not respond to frontline chemotherapy or later relapse with recurrent disease, after which long-term survival rates remain low. To develop new, effective treatment options for these patients, we conducted a series of high-throughput combination drug screens to identify chemotherapies that synergize in a lineage-specific manner with MRX-2843, a small molecule dual MERTK and FLT3 kinase inhibitor currently in clinical testing for treatment of relapsed/refractory leukemias and solid tumors. Using experimental and computational approaches, we found that MRX-2843 synergized strongly-and in a ratio-dependent manner-with vincristine to inhibit both B-ALL and T-ALL cell line expansion.

View Article and Find Full Text PDF

Chaetocochin J exhibits anti-hepatocellular carcinoma effect independent of hypoxia.

Bioorg Chem

October 2023

Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China. Electronic address:

The most studied epipolythiodioxopiperazine (ETP) alkaloids, such as chetomin, gliotoxin and chaetocin, were reported to exert their antitumor effects through targeting HIF-1α. Chaetocochin J (CJ) is another ETP alkaloid, of which the effect and mechanism on cancer are not fully elucidated. Considering the high incidence and mortality of hepatocellular carcinoma (HCC) in China, in the present study, using HCC cell lines and tumor-bearing mice as models, we explored the anti-HCC effect and mechanism of CJ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!