Normal and Aberrant Methyltransferase Activities Give Insights into the Final Steps of Dynemicin A Biosynthesis.

J Am Chem Soc

Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States.

Published: June 2023

The naturally occurring enediynes are notable for their complex structures, potent DNA cleaving ability, and emerging usefulness in cancer chemotherapy. They can be classified into three distinct structural families, but all are thought to originate from a common linear C-heptaene. Dynemicin A (DYN) is the paradigm member of anthraquinone-fused enediynes, one of the three main classes and exceptional among them for derivation of both its enediyne and anthraquinone portions from this same early biosynthetic building block. Evidence is growing about how two structurally dissimilar, but biosynthetically related, intermediates combine in two heterodimerization reactions to create a nitrogen-containing C-coupled product. We report here deletions of two genes that encode biosynthetic proteins that are annotated as -adenosylmethionine (SAM)-dependent methyltransferases. While one, DynO6, is indeed the required -methyltransferase implicated long ago in the first studies of DYN biosynthesis, the other, DynA5, functions in an unanticipated manner in the post-heterodimerization events that complete the biosynthesis of DYN. Despite its removal from the genome of , the Δ strain retains the ability to synthesize DYN, albeit in reduced titers, accompanied by two unusual co-metabolites. We link the appearance of these unexpected structures to a substantial and contradictory body of other recent experimental data to advance a biogenetic rationale for the downstream steps that lead to the final formation of DYN. A sequence of product-forming transformations that is in line with new and existing experimental results is proposed and supported by a model reaction that also encompasses the formation of the crucial epoxide essential for the activation of DYN for DNA cleavage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10985829PMC
http://dx.doi.org/10.1021/jacs.3c04393DOI Listing

Publication Analysis

Top Keywords

dyn
6
normal aberrant
4
aberrant methyltransferase
4
methyltransferase activities
4
activities insights
4
insights final
4
final steps
4
steps dynemicin
4
dynemicin biosynthesis
4
biosynthesis naturally
4

Similar Publications

Physical exercise has been demonstrated to effectively mitigate repetitive behaviors in children with autism spectrum disorder (ASD), but the underlying dynamic brain network mechanisms are poorly understood. The triple network model consists of three brain networks that jointly regulate cognitive and emotional processes and is considered to be the core network underlying the aberrant manifestations of ASD. This study investigated whether a mini-basketball training program (MBTP) could alter repetitive behaviors and the dynamic connectivity of the triple network.

View Article and Find Full Text PDF

The innate immune system is tightly regulated by a complex network of chemical signals triggered by pathogens, cellular damage, and environmental stimuli. While it is well-established that changes in the extracellular environment can significantly influence the immune response to pathogens and damage-associated molecules, there remains a limited understanding of how changes in environmental stimuli specifically impact the activation of the NLRP3 inflammasome, a key component of innate immunity. Here, we demonstrated how shear stress can act as Signal 2 in the NLRP3 inflammasome activation pathway by treating LPS-primed immortalized bone marrow-derived macrophages (iBMDMs) with several physiologically relevant magnitudes of shear stress to induce inflammasome activation.

View Article and Find Full Text PDF

Physicochemical profiles of mixed ruminal microbes in response to surface tension and specific surface area.

Front Vet Sci

January 2025

Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico.

Introduction: In ruminants, a symbiotic rumen microbiota is responsible for supporting the digestion of dietary fiber and contributes to health traits closely associated with meat and milk quality. A holistic view of the physicochemical profiles of mixed rumen microbiota (MRM) is not well-illustrated.

Methods: The experiment was performed with a 3 × 4 factorial arrangement of the specific surface area (SSA: 3.

View Article and Find Full Text PDF

Community stakeholder participation can be incredibly valuable for the qualitative model development process. However, modelers often encounter challenges for participatory modeling projects focusing on high-complexity, synergistic interactions between multiple issues, systems, and granularity. The diverse stakeholder perspectives and volumes of information necessary for developing such models can yield qualitative models that are difficult to translate into quantitative simulation or clear insight for informed decision-making.

View Article and Find Full Text PDF

The widespread use of glyphosate and the high dependence of the agricultural industry on this herbicide cause environmental pollution and pose a threat to living organisms. One of the appropriate solutions in sustainable agriculture to deal with pollution caused by glyphosate and its metabolites is creating a symbiotic relationship between plants and mycorrhizal fungi. Glomalin-related soil protein is a key protein for the bioremediation of glyphosate and its metabolite aminomethyl phosphonic acid in soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!