A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

De Novo Design of a Versatile Peptide-Based Coating to Impart Targeted Functionality at the Surface of Native Polystyrene. | LitMetric

De Novo Design of a Versatile Peptide-Based Coating to Impart Targeted Functionality at the Surface of Native Polystyrene.

ACS Appl Mater Interfaces

Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland 21702, United States.

Published: June 2023

Peptide sequence periodicity is a simple design tool that can be used to generate functional peptide-based surface coatings. De novo-designed peptide N-PEG-VK16 is characterized by a hydrophobic periodicity of two that avidly binds to native polystyrene priming its surface for subsequent targeted functionalization via chemical ligation. The peptidic portion of N-PEG-VK16 is responsible for surface binding, converting polystyrene's hydrophobic surface into a wettable and electrostatically charged environment that facilitates cell attachment. Native polystyrene surfaces are coated by simple peptide adsorption from an aqueous buffered solution, and the resulting primed surface is easily functionalized by cycloaddition chemistry. Herein, we show that ligating a vitronectin-derived peptide to primed polystyrene surfaces enables adhesion, expansion, long-term culture, and phenotype maintenance of human induced pluripotent stem cells. To demonstrate scope, we also show that additional functional ligands can be used, for example, nerve growth factor protein, to control neurite outgrowth.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c02606DOI Listing

Publication Analysis

Top Keywords

native polystyrene
12
polystyrene surfaces
8
surface
6
novo design
4
design versatile
4
versatile peptide-based
4
peptide-based coating
4
coating impart
4
impart targeted
4
targeted functionality
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!