The surface affinity of tetramethylammonium iodide (TMAI) in aqueous solutions is investigated by surface tension measurements and molecular dynamics computer simulations. Experiments, performed in the entire composition range of solubility using the pendant drop method with two different setups, clearly reveal that TMAI is a weakly capillary active salt. Computer simulations performed with the AMBER force field reproduce the experimental data very well, while two other major force fields (i.e., CHARMM and OPLS) can still reproduce the experimental trend qualitatively; however, even qualitative reproduction of the experimental trend requires scaling down the ion charges according to the Leontyev-Stuchebrukhov correction. On the other hand, the GROMOS force field fails in reproducing the experimentally confirmed capillary activity of TMAI. Molecular dynamics simulation results show that, among the two ions, iodide has a clearly larger surface affinity than tetramethylammonium (TMA). Further, the adsorption of the I anions is strictly limited to the first molecular layer beneath the liquid-vapor interface, which is followed by several layers of their depletion. On the other hand, the net negative charge of the surface layer, caused by the excess amount of I with respect to TMA, is compensated by a diffuse layer of adsorbed TMA cations, extending to or beyond the fourth molecular layer beneath the liquid surface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.3c01370DOI Listing

Publication Analysis

Top Keywords

surface affinity
12
affinity tetramethylammonium
12
tetramethylammonium iodide
8
aqueous solutions
8
molecular dynamics
8
computer simulations
8
force field
8
reproduce experimental
8
experimental trend
8
molecular layer
8

Similar Publications

Dengue Virus Fusion Peptide Promotes Hemifusion Formation by Disordering the Interfacial Region of the Membrane.

J Membr Biol

January 2025

School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 109, India.

Membrane fusion is the first step in the infection process of the enveloped viruses. Enveloped viruses fuse either at the cell surface or enter the cell through endocytosis and transfer their internal genetic materials by fusing with the endosomal membrane at acidic pH. In this work, we have evaluated the effect of the Dengue virus fusion peptide (DENV FP) on the polyethylene glycol (PEG)-mediated lipid mixing of vesicles (hemifusion formation) at pH 5 and pH 7.

View Article and Find Full Text PDF

This study investigates a nanoparticle-based doxycycline (DOX) delivery system targeting cervical cancer cells via the CD44 receptor. Molecular docking revealed a strong binding affinity between hyaluronic acid (HA) and CD44 (binding energy: -7.2 kJ/mol).

View Article and Find Full Text PDF

It has been challenging to determine how a ligand that binds to a receptor activates downstream signaling pathways and to predict the strength of signaling. The challenge is compounded by functional selectivity, in which a single ligand binding to a single receptor can activate multiple signaling pathways at different levels. Spectroscopic studies show that in the largest class of cell surface receptors, 7 transmembrane receptors (7TMRs), activation is associated with ligand-induced shifts in the equilibria of intracellular pocket conformations in the absence of transducer proteins.

View Article and Find Full Text PDF

A mechanistic insight into whey protein isolate (WPI) fibrillation driven by divalent cations.

Food Chem

January 2025

Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Azadi Sq., Mashhad, Khorasan Razavi P.O. Box 9177948944, Iran. Electronic address:

Protein fibrillation complex mechanisms led to an emerging trend in research for years. The mechanisms behind whey protein isolate (WPI) fibrillation driven by divalent cations remained still a matter of speculation. All cations (Ca, Fe, Mg, and Zn) enhanced the microenvironment polarity through π-π stacking, and the amide I and II shifts confirmed the fibrillation.

View Article and Find Full Text PDF

This study aimed to develop molecularly imprinted polymer (MIP) nanoparticles specifically for the selective extraction and enrichment of progesterone (P) from royal jelly (RJ), and quantitatively analyzed them by ultra-performance-liquid chromatography electrospray ionization mass spectrometry (UPLC-ESI-MS). Gaussian software-based theoretical calculations identified methacrylic acid (MAA) as the optimal functional monomer for its strong binding affinity to P. MIP was synthesized by precipitation polymerization, and the preparation process of MIP was optimized by one-way variance design and response surface methodology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!