Chronic leg ulcers are affecting approximately 6.5 million Americans, and they are associated with significant mortality, reduced quality of life, and high treatment costs. Since many chronic ulcers have underlying vascular insufficiency, accurate assessment of tissue perfusion is critical to treatment planning and monitoring. This study introduces a dual-scan photoacoustic (PA) tomography (PAT) system that can simultaneously image the dorsal and plantar sides of the foot to reduce imaging time. To account for the unique shape of the foot, the system employs height-adjustable and articulating baseball stages that can scan along the foot's contour. In vivo results from healthy volunteers demonstrate the system's ability to acquire clear images of foot vasculature, and results from patients indicate that the system can image patients with various ulcer conditions. We also investigated various PA features and examined their correlation with the foot condition. Our preliminary results indicate that vessel sharpness, occupancy, intensity, and density could all be used to assess tissue perfusion. This research demonstrated the potential of PAT for routine clinical tissue perfusion assessment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10809222PMC
http://dx.doi.org/10.1109/TUFFC.2023.3283139DOI Listing

Publication Analysis

Top Keywords

tissue perfusion
12
dual-scan photoacoustic
8
photoacoustic tomography
8
foot
5
tomography imaging
4
imaging vascular
4
vascular structure
4
structure foot
4
foot chronic
4
chronic leg
4

Similar Publications

Harnessing intelligence from brain cells in vitro requires a multidisciplinary approach integrating wetware, hardware, and software. Wetware comprises the in vitro brain cells themselves, where differentiation from induced pluripotent stem cells offers ethical scalability; hardware typically involves a life support system and a setup to record the activity from and deliver stimulation to the brain cells; and software is required to control the hardware and process the signals coming from and going to the brain cells. This review provides a broad summary of the foundational technologies underpinning these components, along with outlining the importance of technology integration.

View Article and Find Full Text PDF

Significance: Coronary artery disease is the leading cause of death worldwide, accounting for 16% of all deaths. A common treatment is coronary artery bypass grafting (CABG), though up to 12% of bypass grafts fail during surgery. Early detection of graft failure by intraoperative graft patency assessment could prevent severe complications.

View Article and Find Full Text PDF

Chronic wounds represent an unresolved medical challenge with significant impact for patients' quality of life and global healthcare. Diverse in origin, ischemic-hypoxic and inflammatory conditions play central roles as pathological features that impede proper tissue regeneration. In this study, we propose an innovative approach to address this challenge.

View Article and Find Full Text PDF

This study investigates the association between mild first-wave COVID-19 infection and subclinical abnormalities in echocardiographic strain parameters and myocardial perfusion using single-photon emission computed tomography (SPECT). We conducted a retrospective analysis of patients from June 2020 to March 2021 with a history of mild first-wave COVID-19 infection, presenting with nonspecific cardiac symptoms and referred for SPECT myocardial perfusion stress testing. Patients had no obstructive coronary artery disease (CAD) on follow-up invasive angiography or cardiac computed tomography angiography (CCTA) and had transthoracic echocardiographic images of sufficient quality for strain analysis using AutoSTRAIN (TOMTEC).

View Article and Find Full Text PDF

The transcription factor carbohydrate response element binding protein (ChREBP) has emerged as a crucial regulator of hepatic glucose and lipid metabolism. The increased ChREBP activity involves the pro-oncogenic PI3K/AKT/mTOR signaling pathway that induces aberrant lipogenesis, thereby promoting hepatocellular carcinomas (HCC). However, the molecular pathogenesis of ChREBP-related hepatocarcinogenesis remains unexplored in the high-fat diet (HFD)-induced mouse model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!