Objectives: Paraquat (PQ), a highly effective and rapidly non-selective herbicide, mainly targets the lungs and causes acute lung injury (ALI). So far, the scarcity of effective drug candidates against PQ-induced ALI remains a big challenge. Andrographolide (Andro), with its anti-inflammatory and antioxidant activities, has been demonstrated to alleviate ALI. Nevertheless, whether Andro could alleviate the PQ-mediated ALI remains unknown. Therefore, this study will explore the effects as well as the possible mechanism of Andro against ALI caused by PQ.

Materials And Methods: C57BL/6J mice were injected with 20 mg/kg PQ intraperitoneally to establish an ALI model. PQ-treated MLE-12 cells were applied to a vitro model. Nuclear factor erythroid like-2 (Nrf2) was knocked out to explore the specific effects of the Nrf2/ Heme oxygenase-1 (OH-1) pathway in the protection of Andro against ALI caused by PQ.

Results: Andro significantly reduced lung damage and the ratio of Wet/Dry (W/D) weight, decreased MDA, IL-6, IL-1β, and TNF-ɑ levels, reversed the decrease of CAT and SOD levels, and inhibited apoptosis caused by PQ. Andro obviously increased the ratio of Bcl-2/Bax while reducing caspase-3 and cleaved caspase-3 levels. Furthermore, Andro dramatically elevated the antioxidant proteins Nrf2, NQO-1, and HO-1 levels compared with the PQ group. This experiment demonstrated that Andro reduced ROS and inhibited apoptosis, induced by PQ in MLE-12 cells, by inducing Nrf2/HO-1 pathway activation.

Conclusion: Andro effectively ameliorates oxidant stress and apoptosis in ALI caused by PQ, possibly through inducing Nrf2/HO-1 pathway activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10237162PMC
http://dx.doi.org/10.22038/IJBMS.2023.68827.15000DOI Listing

Publication Analysis

Top Keywords

nrf2/ho-1 pathway
12
ali caused
12
andro
9
acute lung
8
lung injury
8
ali
8
ali remains
8
andro ali
8
mle-12 cells
8
andro reduced
8

Similar Publications

The antioxidant/antiapoptotic features of dapagliflozin (DPG) have mediated its beneficial actions against several experimental models. However, no studies have been conducted to determine whether DPG mitigates the renal injury triggered by cadmium (Cd). Herein, DPG was studied for its potential to attenuate kidney damage in Cd-intoxicated rats, as well as to unravel the mechanisms involving oxidative events, autophagy, and apoptosis.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic lipid accumulation, and echinacoside (ECH) has demonstrated antioxidant and anti-inflammatory effects across multiple conditions, it has demonstrated hepatoprotective effects. Ferroptosis represents a novel mechanism of cell demise, differing from apoptosis and autophagy. Emerging research indicates that ferroptosis in hepatocytes plays a role in the development of alcoholic liver disease.

View Article and Find Full Text PDF

Inflammation and oxidative stress are crucial for osteoarthritis (OA) pathogenesis. Despite the potential of pharmacological pretreatment of chondrocytes in preventing OA, its efficacy in preventing the progression of cartilage damage and promoting its recovery has not been examined. In this study, an HO-induced human OA-like chondrocyte cell model was created using H1467 primary human chondrocytes to evaluate the efficacy of interleukin (IL)-6 and cyclooxygenase (COX)-2 inhibitors (tocilizumab and celecoxib, respectively) in the prevention and treatment of cartilage damage.

View Article and Find Full Text PDF

4',5,6,7-tetrahydoxyisoflavone (6-hydroxygenistein, 6-OHG) is a hydroxylated derivative of genistein with excellent antioxidant activity, but whether 6-OHG can protect hypoxia-induced damage is unclear. The objective of current study was to evaluate the protective effect and underling mechanism of 6-OHG against hypoxia-induced injury via network pharmacology and cellular experiments. 6-OHG-related and hypoxia injury-related targets were screened by public databases.

View Article and Find Full Text PDF

Copper-luteolin nanocomplexes for Mediating multifaceted regulation of oxidative stress, intestinal barrier, and gut microbiota in inflammatory bowel disease.

Bioact Mater

April 2025

School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Engineering Research Center for Medical Micro-Nano Devices, Anhui Medical University, Hefei, 230011, PR China.

Oxidative stress, dysbiosis, and immune dysregulation have been confirmed to play pivotal roles in the complex pathogenesis of inflammatory bowel disease (IBD). Herein, we design copper ion-luteolin nanocomplexes (CuL NCs) through a metal-polyphenol coordination strategy, which plays a multifaceted role in the amelioration of IBD. The fabricated CuL NCs function as therapeutic agents with exceptional antioxidant and anti-inflammatory capabilities because of their great stability and capacity to scavenge reactive oxygen species (ROS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!