Despite numerous innovative designs having been published for phase I drug-combination dose finding trials, their use in real applications is rather limited. As a working group under the American Statistical Association Biopharmaceutical Section, our goal is to identify the unique challenges associated with drug combination, share industry's experiences with combination trials, and investigate the pros and cons of the existing designs. Toward this goal, we review seven existing designs and distinguish them based on the criterion of whether their primary objectives are to find a single maximum tolerated dose (MTD) or the MTD contour (i.e., multiple MTDs). Numerical studies, based on either industry-specified fixed scenarios or randomly generated scenarios, are performed to assess their relative accuracy, safety, and ease of implementation. We show that the algorithm-based 3+3 design has poor performance and often fails to find the MTD. The performance of model-based combination trial designs is mixed: some demonstrate high accuracy of finding the MTD but poor safety, while others are safe but with compromised identification accuracy. In comparison, the model-assisted designs, such as BOIN and waterfall designs, have competitive and balanced performance in the accuracy of MTD identification and patient safety, and are also simple to implement, thus offering an attractive approach to designing phase I drug-combination trials. By taking into consideration the design's operating characteristics, ease of implementation and regulation, the need for advanced infrastructures, as well as the risk of regulatory acceptance, our paper offers practical guidance on the selection of a suitable dose-finding approach for designing future combination trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10237505PMC
http://dx.doi.org/10.1080/19466315.2022.2081602DOI Listing

Publication Analysis

Top Keywords

phase drug-combination
12
accuracy safety
8
combination trials
8
existing designs
8
ease implementation
8
approach designing
8
designs
7
accuracy
5
trials
5
mtd
5

Similar Publications

Tissue regeneration after a wound occurs through three main overlapping and interrelated stages namely inflammatory, proliferative, and remodelling phases, respectively. The inflammatory phase is key for successful tissue reconstruction and triggers the proliferative phase. The macrophages in the non-healing wounds remain in the inflammatory loop, but their phenotypes can be changed interactions with nanofibre-based scaffolds mimicking the organisation of the native structural support of healthy tissues.

View Article and Find Full Text PDF

The biological applications of noncationic porphyrin-fullerene (P-F) dyads as anti-HIV agents have been limited despite the established use of several cationic P-F dyads as anti-cancer photodynamic therapy (PDT) agents. This article explores the potential of amphiphilic non-cationic porphyrin-fullerene dyads as HIV-1 inhibitors under both PDT (light-treated) and non-PDT (dark) conditions. The amphiphilic P-F dyads, PBC and PBC, demonstrated enhanced efficacy in inhibiting the entry and production of HIV-1 (subtypes B and C).

View Article and Find Full Text PDF

Background And Aims: Sensitivity to immune checkpoint inhibitor (ICI) therapy depends in part on the genetic and epigenetic makeup of cancer cells, and CD8 T-lymphocytes that mediate immune responses. Epigenetics are heritable reversible changes in gene expression that occur without any changes in the nuclear DNA sequence or DNA copy number.

Primary Objective: i.

View Article and Find Full Text PDF

Aim: The study aimed to determine the incidence of adverse drug reactions (ADRs) among newly diagnosed tuberculosis (TB) patients receiving daily drug regimen with fixed-dose combination treatment under the National Tuberculosis Elimination Program.

Materials And Methods: A community-based prospective cohort study was carried out in the Udupi district. Over 12 months, all newly diagnosed TB patients of either gender were included from 63 primary health centers and 6 community health centers, and ADRs were recorded by personal interviews.

View Article and Find Full Text PDF

Nowadays, chemotherapy and immunotherapy remain the major treatment strategies for Triple-Negative Breast Cancer (TNBC). Identifying biomarkers to pre-select and subclassify TNBC patients with distinct chemotherapy responses is essential. In the current study, we performed an unbiased Reverse Phase Protein Array (RPPA) on TNBC cells treated with chemotherapy compounds and found a leading significant increase of phosphor-AURKA/B/C, AURKA, AURKB, and PLK1, which fall into the mitotic kinase group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!