Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Liver cancer is among the top five most common cancers globally. Lipid-lowering drugs such as statins can lower the risk of liver cancer, but may also cause liver damage. LipoCol Forte capsules (LFC), a red yeast rice product, have demonstrated significant antihypercholesterolemic effects and a good safety profile in clinical studies.
Aim: To evaluate whether LFC lowers the risk of liver cancer in adults in this propensity score-matched, nationwide, population-based cohort study.
Methods: We used data from Taiwan's National Health Insurance Research Database, which includes electronic medical records for up to 99.99% of Taiwan's population. LFC users and LFC non-users were matched 1:1 by propensity scores between January 2010 and December 2017. All had follow-up data for at least 1 year. Statistical analyses compared demographic distributions including sex, age, comorbidities, and prescribed medications. Cox regression analyses estimated adjusted hazard ratios (aHRs) after adjusting for potential confounders.
Results: We enrolled 33231 LFC users and 33231 non-LFC users (controls). No significant differences between the study cohorts were identified regarding comorbidities and medications [standardized mean difference (SMD) < 0.05]. At follow-up, the overall incidence of liver cancer was significantly lower in the LFC cohort compared with controls [aHR 0.91; 95% confidence interval (CI): 0.86-0.95; < 0.001]. The risk of liver cancer was significantly reduced in both females (aHR 0.87; 95%CI: 0.8-0.94; < 0.001) and males (aHR 0.93; 95%CI: 0.87-0.98; < 0.01) in the LFC cohort compared with their counterparts in the non-LFC cohort. The antitumor protective effects applied to patients with comorbidities (including hypertension, ischemic stroke, diabetes mellitus, hyperlipidemia, hepatitis B infection and hepatitis C infection). Those using LFC for more than 84 drug days had a 0.64-fold lower risk of liver cancer compared with controls ( < 0.001). Compared with controls, the risk of developing liver cancer in the LFC cohort progressively decreased over time; the lowest incidence of liver cancer occurred in LFC users followed-up for more than 6 years (27.44 31.49 per 1,000 person-years; aHR 0.75; 95%CI: 0.68-0.82; < 0.001).
Conclusion: This retrospective cohort study indicates that LFC has a significantly protective effect on lowering the risk of liver cancer, in a dose-dependent and time-dependent manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10237025 | PMC |
http://dx.doi.org/10.4251/wjgo.v15.i5.828 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!