Background: Driven by increased prevalence of type 2 diabetes and ageing populations, wounds affect millions of people each year, but monitoring and treatment remain limited. Glucocorticoid (stress hormones) activation by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) also impairs healing. We recently reported that 11β-HSD1 inhibition with oral AZD4017 improves acute wound healing by manual 2D optical coherence tomography (OCT), although this method is subjective and labour-intensive.

Objectives: Here, we aimed to develop an automated method of 3D OCT for rapid identification and quantification of multiple wound morphologies.

Methods: We analysed 204 3D OCT scans of 3 mm punch biopsies representing 24 480 2D wound image frames. A u-net method was used for image segmentation into 4 key wound morphologies: early granulation tissue, late granulation tissue, neo-epidermis, and blood clot. U-net training was conducted with 0.2% of available frames, with a mini-batch accuracy of 86%. The trained model was applied to compare segment area (per frame) and volume (per scan) at days 2 and 7 post-wounding and in AZD4017 compared to placebo.

Results: Automated OCT distinguished wound tissue morphologies, quantifying their volumetric transition during healing, and correlating with corresponding manual measurements. Further, AZD4017 improved epidermal re-epithelialisation (by manual OCT) with a corresponding trend towards increased neo-epidermis volume (by automated OCT).

Conclusion: Machine learning and OCT can quantify wound healing for automated, non-invasive monitoring in real-time. This sensitive and reproducible new approach offers a step-change in wound healing research, paving the way for further development in chronic wounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233090PMC
http://dx.doi.org/10.1002/ski2.203DOI Listing

Publication Analysis

Top Keywords

wound healing
12
wound
8
machine learning
8
optical coherence
8
coherence tomography
8
type diabetes
8
granulation tissue
8
oct
6
automated
5
healing
5

Similar Publications

Due to its availability and biocompatibility, the human amniotic membrane (hAM) is being investigated by a large number of researchers with the goal of gaining a better understanding of the materials' mechanical behavior and structural integrity and optimizing them for various Tissue Engineering applications. In this research, biopolymers sodium alginate (SA) and silk fibroin (SF) were electrospun onto a decellularized hAM, resulting in two types of hybrid scaffolds: hAM/SF and hAM/SF/SA. The mechanical characteristics of these nanofibers were then analyzed to guide scaffold optimization for applications using these materials.

View Article and Find Full Text PDF

Invading blood cells, extracellular tissue, and soluble mediators all play important roles in the wound-healing process. There is a substantial global burden of disease and mortality attributable to skin defects that do not heal. About 1% to 2% of the population in industrialized nations suffers from chronic wounds that don't heal, despite healthcare breakthroughs; this condition is very costly, costing about $25 billion each year in the US alone.

View Article and Find Full Text PDF

Revealing the promising era of silk-based nanotherapeutics: a ray of hope for chronic wound healing treatment.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India.

Chronic wounds significantly contribute to disability and affect the mortality rate in diabetic patients. In addition, pressure ulcers, diabetic foot ulcers, arterial ulcers, and venous ulcers pose a significant health burden due to their associated morbidity and death. The complex healing process, environmental factors, and genetic factors have been identified as the rate-limiting stages of chronic wound healing.

View Article and Find Full Text PDF

The novel piperine derivative MHJ-LN inhibits breast cancer by inducing apoptosis via p53 activation.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China.

Triple-negative breast cancer (TNBC) is characterized by high aggressiveness and recurrence rates due to the lack of effective treatment options. Piperine, a natural alkaloid extracted from black pepper, has demonstrated significant anticancer potential in recent years. Therefore, developing piperine derivatives to enhance its anticancer effects holds critical clinical significance.

View Article and Find Full Text PDF

Multifunctional hydrogels hold significant promise for promoting the healing of infected wounds but often fall short in inhibiting antibiotic-resistant pathogens, and their clinical translation is limited by complex preparation processes and high costs. In this study, a multifunctional hydrogel is developed by combining metal-phenolic networks (MPNs) formed by tannic acid (TA) and gallium ions (Ga⁺) with chitosan (CS) through a simple one-step method. The resulting CS-TA-Ga⁺ (CTG) hydrogel is cost-effective and exhibits desirable properties, including injectability, self-healing, pH responsiveness, hemostasis, antioxidant, anti-inflammatory, and antibacterial activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!