This study investigates the physical, structural, chemical, thermal, mechanical, and morphological properties of the fibers of canes and compares the findings with various lignocellulosic fibers to find the place of these fibers as reinforcements for polymer composites. Chemical analysis confirms the presence of 37.43 ± 1.40% cellulose, 31.06 ± 1.03% hemicellulose, and 28.42 ± 0.81% lignin in cane fibers, moreover, the presence of these constituents is also confirmed by Fourier Transformed Infrared Spectroscopic (FTIR) analysis. The X-Ray diffraction (XRD) analysis determines the crystallinity index of 37.38 ± 0.27% and the crystallite size of 0.87 ± 0.03 nm of the samples. The thermogravimetric analysis ensures that the cane fibers are thermally stable up to 210 ± 5 °C. The Weibull distribution analysis is employed to estimate the tensile properties of canes, which reveal a tensile strength of 37.5 ± 2 MPa, Young's modulus of 1.05 ± 0.08 GPa, and an elongation at break of 18.94 ± 4.26%. The roughness of the fibers' outer surface is confirmed by SEM micrographs and AFM analysis, suggesting that it could enhance the adhesion between fibers and matrix during the fabrication of composites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238902PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e16491DOI Listing

Publication Analysis

Top Keywords

polymer composites
8
cane fibers
8
fibers
6
analysis
6
characterization natural
4
natural cellulosic
4
cellulosic fiber
4
fiber jati
4
jati bet
4
bet cane
4

Similar Publications

A Novel Polytetrahydrofuran-Based Shape Memory Polyurethane Enhanced by Polyglycolide-Block-Polytetrahydrofuran-Block-Polyglycolide Copolymer.

Polymers (Basel)

December 2024

State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.

A series of polyurethanes (PU-GT) were prepared using polyglycolide-block-polytetrahydrofuran-block-polyglycolide (PGA-PTHF-PGA), polytetrahydrofuran homopolymer (PTHF), glycerol, and hexamethylene diisocyanate (HDI) by a one-pot synthesis method. The non-isothermal crystallization and subsequent heating curves showed that the PTHF component in these polyurethanes could crystallize in a temperature range of -11.5~2.

View Article and Find Full Text PDF

Extraction of Natural-Based Raw Materials Towards the Production of Sustainable Man-Made Organic Fibres.

Polymers (Basel)

December 2024

Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal.

Bioresources have been gaining popularity due to their abundance, renewability, and recyclability. Nevertheless, given their diverse composition and complex hierarchical structures, these bio-based sources must be carefully processed to effectively extract valuable raw polymeric materials suitable for producing man-made organic fibres. This review will first highlight the most relevant bio-based sources, with a particular focus on promising unconventional biomass sources (terrestrial vegetables, aquatic vegetables, fungi, and insects), as well as agroforestry and industrial biowaste (food, paper/wood, and textile).

View Article and Find Full Text PDF

In recent years, the construction industry has faced challenges related to rising material costs, labor shortages and environmental sustainability, resulting in an increased interest in modular construction cores composed of recycled materials, such as XPS, PUR, PLW and GFRP, from waste from the truck body industry. Two resins, PUR and polyester, were used to bond these recycled composites. Physical, chemical and mechanical analyses showed that the panels formed with PUR resin had superior workability due to the higher open time of the resin, 11.

View Article and Find Full Text PDF

Participation of Polymer Materials in the Structure of Piezoelectric Composites.

Polymers (Basel)

December 2024

Doctoral School of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independenței nr. 313, Sector 6, 060042 Bucureşti, Romania.

This review explores the integration of polymer materials into piezoelectric composite structures, focusing on their application in sensor technologies, and wearable electronics. Piezoelectric composites combining ceramic phases like BaTiO, KNN, or PZT with polymers such as PVDF exhibit significant potential due to their enhanced flexibility, processability, and electrical performance. The synergy between the high piezoelectric sensitivity of ceramics and the mechanical flexibility of polymers enables the development of advanced materials for biomedical devices, energy conversion, and smart infrastructure applications.

View Article and Find Full Text PDF

In this work, twin-screw extruder and compression moulding techniques were utilized to fabricate polymer blends: polypropylene (PP), polybutadiene (PB), and composites using glass fibre (GF) and flax fibre (FF). During fabrication, the polymer ratios maintained between PP and PB were 90:10, 80:20, and 70:30. Likewise, the composites were fabricated by varying the ratios between the PP, PB, and GF, which were 90PP:10PB:10GF, 80PP:20PB:10GF, and 70PP:30PB:10GF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!