Introduction: Cerebellar transcranial alternating current stimulation (ctACS) has shown promise as a therapeutic modality for treating a variety of neurological disorders, and for affecting normal learning processes. Yet, little is known about how electric fields induced by applied currents affect cerebellar activity in the mammalian cerebellum under conditions.
Methods: Alternating current (AC) stimulation with frequencies from 0.5 to 20 Hz was applied to the surface of the cerebellum in anesthetized rats. Extracellular recordings were obtained from Purkinje cells (PC), cerebellar and vestibular nuclear neurons, and other cerebellar cortical neurons.
Results And Discussion: AC stimulation modulated the activity of all classes of neurons. Cerebellar and vestibular nuclear neurons most often showed increased spike activity during the negative phase of the AC stimulation. Purkinje cell simple spike activity was also increased during the negative phase at most locations, except for the cortex directly below the stimulus electrode, where activity was most often increased during the positive phase of the AC cycle. Other cortical neurons showed a more mixed, generally weaker pattern of modulation. The patterns of Purkinje cell responses suggest that AC stimulation induces a complex electrical field with changes in amplitude and orientation between local regions that may reflect the folding of the cerebellar cortex. Direct measurements of the induced electric field show that it deviates significantly from the theoretically predicted radial field for an isotropic, homogeneous medium, in both its orientation and magnitude. These results have relevance for models of the electric field induced in the cerebellum by AC stimulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232809 | PMC |
http://dx.doi.org/10.3389/fnsys.2023.1173738 | DOI Listing |
Elife
January 2025
Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, United States.
Calcium and integrin-binding protein 2 (CIB2) and CIB3 bind to transmembrane channel-like 1 (TMC1) and TMC2, the pore-forming subunits of the inner-ear mechano-electrical transduction (MET) apparatus. These interactions have been proposed to be functionally relevant across mechanosensory organs and vertebrate species. Here, we show that both CIB2 and CIB3 can form heteromeric complexes with TMC1 and TMC2 and are integral for MET function in mouse cochlea and vestibular end organs as well as in zebrafish inner ear and lateral line.
View Article and Find Full Text PDFJ Otolaryngol Head Neck Surg
January 2025
Division of Otorhinolaryngology-Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, University of Geneva, Geneva, Switzerland.
Background: A vestibular implant can partially restore vestibular function by providing motion information through implanted electrodes. During vestibular implantation, various obstructions of the semicircular canals, such as protein deposits, fibrosis, and ossification, can be encountered. The objective was to explore the relationship between preoperative imaging and intraoperative findings of semicircular canal obstruction and to develop surgical strategies for dealing with obstructions of the semicircular canal(s) in patients eligible for vestibular implantation.
View Article and Find Full Text PDFEur Arch Otorhinolaryngol
November 2024
Department of Otorhinolaryngology-Head and Neck Surgery, Mental Health and Neuroscience (MHeNS), Faculty of Health Medicine and Life Sciences, Maastricht University Medical Center, Maastricht, The Netherlands.
Sci Rep
November 2024
Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552, Indore, India.
Unlabelled: The vestibular system is important for posture, balance, motor control, and spatial orientation. Each of the vestibular end organs have specialized neuroepithelia with both regular and irregular afferents. In otolith organs, the utricle and saccule, afferents most responsive to linear jerk (jerk - derivative of acceleration) are located in the striola and project centrally to the vestibular nuclear complex (VNC) as well as the uvula and nodulus of the vestibulocerebellum (VeCb).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!