Pressure sensitive adhesives are components of everyday products found in homes, offices, industries, and hospitals. Serving the general purpose of fissure repair and object fixation, pressure sensitive adhesives indiscriminately bind surfaces, as long as contact pressure is administered at application. With that being said, the chemical and material properties of the adhesive formulation define the strength of a pressure sensitive adhesive to a particular surface. Given our increased understanding of the viscoelastic material requirements as well as the intermolecular interactions at the binding interface required for functional adhesives, pressure sensitive adhesives are now being explored for greater use. New polymer formulations impart functionality and degradability for both internal and external applications. This review highlights the structure-property relationships between polymer architecture and pressure sensitive adhesion, specifically for medicine. We discuss the rational, molecular-level design of synthetic polymers for durable, removable, and biocompatible adhesion to wet surfaces like tissue. Finally, we examine prevalent challenges in biomedical wound closure and the new, innovative strategies being employed to address them. We conclude by summarizing the progress of current research, identifying additional clinical opportunities, and discussing future prospects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10237363 | PMC |
http://dx.doi.org/10.1016/j.progpolymsci.2023.101692 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!