The high permeability and strong selectivity of nanoporous silicon nitride (NPN) membranes make them attractive in a broad range of applications. Despite their growing use, the strength of NPN membranes needs to be improved for further extending their biomedical applications. In this work, we implement a deep learning framework to design NPN membranes with improved or prescribed strength values. We examine the predictions of our framework using physics-based simulations. Our results confirm that the proposed framework is not only able to predict the strength of NPN membranes with a wide range of microstructures, but also can design NPN membranes with prescribed or improved strength. Our simulations further demonstrate that the microstructural heterogeneity that our framework suggests for the optimized design, lowers the stress concentration around the pores and leads to the strength improvement of NPN membranes as compared to conventional membranes with homogenous microstructures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221757 | PMC |
http://dx.doi.org/10.1038/s41524-023-01037-0 | DOI Listing |
Antibiotics (Basel)
December 2024
Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand.
Multidrug-resistant (MDR) bacteria, especially , are a major contributor to healthcare-associated infections globally, posing significant treatment challenges. This study explores the efficacy of (-)-epigallocatechin gallate (EGCG), a natural constituent of green tea, in combination with ampicillin (AMP) to restore the effectiveness of AMP against 40 isolated MDR strains. Antimicrobial activity assays were conducted to determine the minimum inhibitory concentrations (MIC) of EGCG using the standard microdilution technique.
View Article and Find Full Text PDFPlant Foods Hum Nutr
December 2024
Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Tablaje Catastral 13615, Col. Chuburná de Hidalgo Inn, Mérida, 97203, Yucatán, México.
The increasing concern over microbial resistance to conventional antimicrobial agents used in food preservation has led to growing interest in plant-derived antimicrobial peptides (AMPs) as alternative solutions. In this study, the antimicrobial mechanisms of chia seed-derived peptides YACLKVK, KLKKNL, KLLKKYL, and KKLLKI were investigated against Staphylococcus aureus (SA) and Escherichia coli (EC). Fluorometric assays and scanning electron microscopy (SEM) demonstrated that the peptides disrupt bacterial membranes, with propidium iodide (PI) uptake reaching 72.
View Article and Find Full Text PDFInt J Biol Macromol
August 2024
College of Food Science and Technology, Bohai University, Jinzhou 121013, People's Republic of China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China.
The applications of polysaccharides as emulsifiers are limited due to the lack of hydrophobicity. However, traditional hydrophobic modification methods used for polysaccharides are complicated and involve significant mechanical and thermal losses. In this study, soy hull polysaccharide (SHP) and terminally aminopropylated polydimethylsiloxane (NPN) were selected to investigate the feasibility of a simple and green interfacial membrane strengthening strategy based on the interfacial polymerization of anionic polysaccharides and fat-soluble alkaline ligands.
View Article and Find Full Text PDFFood Sci Biotechnol
June 2024
The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122 Jiangsu China.
Foods
April 2024
State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
This study sought to explore the antimicrobial activity of punicalagin against and its potential modes of action. ATCC 17802 and RIMD 2210633 were exposed to punicalagin, and the energy production, membrane potential, and envelope permeability, as well as the interaction with cell biomolecules, were measured using a variety of fluorescent probes combined with electrophoresis and Raman spectroscopy. Punicalagin treatment disrupted the envelope integrity and induced a decrease in intracellular ATP and pH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!