Nonthermal plasma is a well-recognized environmentally advantageous method for producing green fuels. This work used different photocatalysts, including PZO, SZO, and SZC for hydrogen production using an atmospheric argon coaxial dielectric barrier discharge (DBD)-based light source. The photocatalysts were produced using a sol-gel route. The DBD discharge column was filled with water, methanol, and the catalyst to run the reaction under argon plasma. The DBD reactor was operated with a 10 kV AC source to sustain plasma for water splitting. The light absorption study of the tested catalysts revealed a decrease in the band gap with an increase in the concentration of Sr and carbon nanotubes (CNTs) in the Sr/ZnO/CNTs series. The photocatalyst SZC demonstrated the lowest photoluminescence (PL) intensity, implying the most quenched recombination of charge carriers. The highest H evolution rate of 2760 μmol h g was possible with the SZC catalyst, and the lowest evolution rate of 56 μmol h g was observed with the PZO catalyst. The photocatalytic activity of SZC was initially high, which decreased slightly over time due to the deactivation of the photocatalyst. The photocatalytic activity decreased from 2760 to 1670 μmol h g at the end of the process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233682PMC
http://dx.doi.org/10.1021/acsomega.3c01262DOI Listing

Publication Analysis

Top Keywords

water splitting
8
dielectric barrier
8
evolution rate
8
photocatalytic activity
8
testing sr-doped
4
sr-doped zno/cnt
4
zno/cnt photocatalysts
4
photocatalysts hydrogen
4
hydrogen evolution
4
evolution water
4

Similar Publications

Membrane-assisted direct seawater splitting (DSS) technologies are actively studied as a promising route to produce green hydrogen (H2), whereas the indispensable use of supporting electrolytes that help to extract water and provide electrochemically-accelerated reaction media results in a severe energy penalty, consuming up to 12.5% of energy input when using a typical KOH electrolyte. We bypass this issue by designing a zero-gap electrolyzer configuration based on the integration of cation exchange membrane and bipolar membrane assemblies, which protects stable DSS operation against the precipitates and corrosion in the absence of additional supporting electrolytes.

View Article and Find Full Text PDF

Fluorine-expedited nitridation of layered perovskite SrTiO for visible-light-driven photocatalytic overall water splitting.

Nat Commun

January 2025

Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China.

Photocatalytic overall water splitting is a promising approach for a sustainable hydrogen provision using solar energy. For sufficient solar energy utilization, this reaction ought to be operated based on visible-light-active semiconductors, which is very challenging. In this work, an F-expedited nitridation strategy is applied to modify the wide-bandgap semiconductor SrTiO for visible-light-driven photocatalytic overall water splitting.

View Article and Find Full Text PDF

Covalent semiconductors of the carbon nitride family are among the most promising systems to realize "artificial photosynthesis", that is exploiting synthetic materials which use sunlight as an energy source to split water into its elements or converting CO into added value chemicals. However, the role of surface interactions and electronic properties on the reaction mechanism remain still elusive. Here, we use in-situ spectroscopic techniques that enable monitoring surface interactions in carbon nitride under artificial photosynthetic conditions.

View Article and Find Full Text PDF

The urgent need to address escalating environmental pollution and energy management challenges has underscored the importance of developing efficient, cost-effective, and multifunctional electrocatalysts. To address these issues, we developed an eco-friendly, cost-effective, and multifunctional electrocatalyst a solvothermal synthesis approach. Due to the merits of the ideal synthesis procedure, the FeCoHS@NF electrocatalyst exhibited multifunctional activities, like OER, HER, OWS, UOR, OUS, and overall alkaline seawater splitting, with required potentials of 1.

View Article and Find Full Text PDF

Electrochemical water splitting is a pivotal process for sustainable hydrogen energy production, relying on efficient hydrogen evolution reaction (HER) catalysts, particularly in acidic environments, where both high activity and durability are crucial. Despite the favorable kinetics of platinum (Pt)-based materials, their performance is hindered under harsh conditions, driving the search for alternatives. Due to their unique structural characteristic, Prussian blue analogs (PBAs) emerge as attractive candidates for designing efficient HER electrocatalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!