Gastric emptying (GE) exhibits a wide inter-individual variation and is a major determinant of postprandial glycaemia in health and diabetes; the rise in blood glucose following oral carbohydrate is greater when GE is relatively more rapid and more sustained when glucose tolerance is impaired. Conversely, GE is influenced by the acute glycaemic environment acute hyperglycaemia slows, while acute hypoglycaemia accelerates it. Delayed GE (gastroparesis) occurs frequently in diabetes and critical illness. In diabetes, this poses challenges for management, particularly in hospitalised individuals and/or those using insulin. In critical illness it compromises the delivery of nutrition and increases the risk of regurgitation and aspiration with consequent lung dysfunction and ventilator dependence. Substantial advances in knowledge relating to GE, which is now recognised as a major determinant of the magnitude of the rise in blood glucose after a meal in both health and diabetes and, the impact of acute glycaemic environment on the rate of GE have been made and the use of gut-based therapies such as glucagon-like peptide-1 receptor agonists, which may profoundly impact GE, in the management of type 2 diabetes, has become commonplace. This necessitates an increased understanding of the complex inter-relationships of GE with glycaemia, its implications in hospitalised patients and the relevance of dysglycaemia and its management, particularly in critical illness. Current approaches to management of gastroparesis to achieve more personalised diabetes care, relevant to clinical practice, is detailed. Further studies focusing on the interactions of medications affecting GE and the glycaemic environment in hospitalised patients, are required.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10236995PMC
http://dx.doi.org/10.4239/wjd.v14.i5.447DOI Listing

Publication Analysis

Top Keywords

glycaemic environment
12
critical illness
12
gastric emptying
8
glycaemia implications
8
clinical practice
8
major determinant
8
health diabetes
8
rise blood
8
blood glucose
8
acute glycaemic
8

Similar Publications

Macroalgae growing in the polar regions are exposed to extreme environment conditions and may induce differences in the structural and bioactive properties of their polysaccharides. Six brown macroalgae viz. kelp species - Saccharina latissima, Laminaria digitata, and Alaria esculenta; rockweed Fucus distichus; and filamentous macroalgae - Chorda filum and Chordaria flageliformis, from the Arctic were investigated for polysaccharides and their bioactivity.

View Article and Find Full Text PDF

Diabetes presents a significant challenge to healthcare due to the short- and long-term complications associated with poor blood sugar control. Computer simulation platforms have emerged as promising tools for advancing diabetes therapy by simulating patient responses to treatments in a virtual environment. The University of Virginia Virtual Lab (UVLab) is a new simulation platform engineered to mimic the metabolic behavior of individuals with type 2 diabetes (T2D) using a mathematical model of glucose homeostasis in T2D and a large population of 6062 virtual subjects.

View Article and Find Full Text PDF

Combined effects of climate stressors and soil arsenic contamination on metabolic profiles and productivity of rice (Oryza sativa L.).

Sci Total Environ

January 2025

Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.

Rice productivity and quality are increasingly at risk in arsenic (As) affected areas, challenge that is expected to worsen under changing climatic conditions. Free-Air Concentration Enrichment experiments revealed that eCO, eO, and eTemp, whether acting individually or in combination with low and high As irrigation, significantly impact rice yield and grain quality. Elevated CO₂ significantly increased shoot biomass, with minimal impact on root biomass, except under low As irrigation conditions.

View Article and Find Full Text PDF

Background/objectives: Studies have shown that chronobiological factors may adversely affect glycemic control in patients with type 2 diabetes mellitus. We assessed the association of chronobiological factors with glycemic control and neonatal birth weight in women with GDM.

Methods: A prospective cohort study included 208 women aged 18-45 years with a singleton pregnancy who were randomly selected from among women undergoing follow-up for GDM at the Maternal-Fetal Medicine Unit of a tertiary medical center.

View Article and Find Full Text PDF

Dietary Influences on Gut Microbiota and Their Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD).

Nutrients

December 2024

Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major contributor to liver-related morbidity, cardiovascular disease, and metabolic complications. Lifestyle interventions, including diet and exercise, are first line in treating MASLD. Dietary approaches such as the low-glycemic-index Mediterranean diet, the ketogenic diet, intermittent fasting, and high fiber diets have demonstrated potential in addressing the metabolic dysfunction underlying this condition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!