The incidence of salt-sensitive hypertension is quite common and varies between 30-60% in hypertensive patients. Regarding the causal role of high salt intake in the development of salt-sensitive hypertension, recent evidence has demonstrated that the gut through its microbiota plays a significant role in its genesis. Besides the gut, the kidneys also play important role in salt-sensitive hypertension and there is clinical and experimental evidence of an interrelationship between the gut and the kidneys in the development of salt-sensitive hypertension through the so-called "gastro-renal axis." The gut besides being an absorptive organ, it is also a hormonal secretory organ involving the secretion of gastrin, dopamine, norepinephrine, angiotensin, and aldosterone which through their action with the kidneys are involved in the development of salt-sensitive hypertension. In addition, the kidneys exert a protective role against the development of hypertension through the secretion of prostaglandins and their vasodilatory action. To assess the current evidence on the role of high salt intake and the interplay of the gut and kidneys in its development, a Medline search of the English literature was contacted between 2012 and 2022, and 46 pertinent papers were selected. These papers together with collateral literature will be discussed in this review.

Download full-text PDF

Source
http://dx.doi.org/10.1097/CRD.0000000000000518DOI Listing

Publication Analysis

Top Keywords

salt-sensitive hypertension
24
development salt-sensitive
16
gut kidneys
12
role high
8
high salt
8
salt intake
8
kidneys development
8
hypertension
7
gut
6
development
6

Similar Publications

Background: Hypertension is a leading risk factor for the development of Alzheimer's disease and Alzheimer's disease-related dementia (AD/ADRD), which is closely linked with cerebral vascular inflammation and dysfunction. We previously found that high-salt-treated Dahl Salt-Sensitive (SS) rats displayed blood-brain barrier (BBB) leakage, astrocyte activation, neurodegeneration, and cognitive impairments. CD14 functions in the Toll-like receptor 4 (TLR4) complex to initiate proinflammatory signaling events in response to LPS.

View Article and Find Full Text PDF

Background: Early vascular aging (EVA), manifesting as increases in central arterial stiffness and BP, is associated with cognitive impairment in humans. EVA and cognitive impairment occurs in Dahl salt-sensitive (DSS) rats consuming a normal salt (NS) diet with an advancing age. Quercetin (QRC), a flavonoid with anti-oxidant, anti-inflammatory and senolytic properties, previously shown to reduce salt-sensitive hypertension in DSS.

View Article and Find Full Text PDF

Myocardial dysfunction is a crucial determinant of the development of heart failure in salt-sensitive hypertension. Ferroptosis, a programmed iron-dependent cell death, has been increasingly recognised as an important contributor to the pathophysiology of various cardiovascular diseases. This study aims to investigate the role and underlying mechanism of ferroptosis in high-salt (HS)-induced myocardial damage.

View Article and Find Full Text PDF

Possible involvement of up-regulated salt-dependent glucose transporter-5 (SGLT5) in high-fructose diet-induced hypertension.

Hypertens Res

December 2024

Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kamoda 1981, Kawagoe, Saitama, 350-8550, Japan.

Excessive fructose intake causes a variety of adverse conditions (e.g., obesity, hepatic steatosis, insulin resistance and uric acid overproduction).

View Article and Find Full Text PDF

Increased Salt Sensitive Blood Pressure in Women Versus men: Is Relative Hyperaldosteronism the Mechanism?

J Clin Endocrinol Metab

December 2024

Division of Endocrinology, Diabetes and Hypertension, Harvard Medical School, Brigham and Women's Hospital, 221 Longwood Avenue, RFB-2, Boston, MA, 02115, USA.

Context: Women versus men have more Salt sensitive blood pressure (SSBP) and higher stimulated aldosterone (ALDO) levels, suggesting that their increased SSBP is secondary to a relative hyper-ALDO state. Contrariwise, men versus women have higher sedentary ALDO levels.

Objective: Thus, the present project was designed to address the question are women versus men in a relatively hyper-ALDO state?

Methods: 363 women, and 483 men were selected from HyperPATH cohort to assess the potential underlying mechanism for observed sex differences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!