Purpose: This research aims to identify the miRNAs that could target the genes overexpressed in prostate cancer so that miRNA-based therapeutics could be developed.

Methods: A 7mer-m8 model of microRNA targeting was utilized in order to analyse the relationship between microRNAs and overexpressed genes. The efficiency of miRNA binding was investigated using various parameters namely free energy (AMFE), GC and GC3 content, translation efficiency, cosine similarity metric, mRNA stability, free energy of RNA duplex, and base compositional difference. BLAST2GO software was used to elucidate the functional roles of the genes overexpressed in prostate cancer.

Results: The current research reveals that the coding sequences of the genes were found targeted with multiple miRNAs. For instance, the HPN gene was targeted by the microRNA miR-4279 at two distinct sites i.e. 263-278 and 746-761 in the coding sequence. In the present study, it was observed that the target region of the genes exhibited a comparatively high GC and GC3 contents in comparison to the flanking regions. A low translational rate and weak relationship between RSCU and tRNA were obtained which may be due to the absence of optimal codons.

Conclusion: In this study, we have uncovered the human miRNAs that have potential for binding to the coding sequences of 14 most overexpressed genes in prostate cancer and thereby could silence those genes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00432-023-04910-zDOI Listing

Publication Analysis

Top Keywords

overexpressed genes
12
prostate cancer
12
genes
8
genes prostate
8
genes overexpressed
8
overexpressed prostate
8
free energy
8
coding sequences
8
turning overexpressed
4
prostate
4

Similar Publications

Plant growth-promoting rhizobacterium Sp7 utilizes fructose efficiently via a fructose phosphotransferase system (Fru-PTS). Its genome encodes two putative Fru-PTS, each consisting of FruB (EIIA), FruK (Pfk), and FruA (EIIBC) proteins. We compared the proteomes of Sp7 grown with malate or fructose as sole carbon source, and noticed upregulation of the constituent proteins of Fru-PTS1 only on fructose.

View Article and Find Full Text PDF

Unveiling the role of microRNAs in nonhost resistance to Sclerotinia sclerotiorum: Rice-specific microRNAs attack the pathogen via cross-kingdom RNAi.

J Integr Plant Biol

January 2025

Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China.

The development of rapeseed with high resistance against the pathogen Sclerotinia sclerotiorum is impeded by the lack of effective resistance resources within host species. Unraveling the molecular basis of nonhost resistance (NHR) holds substantial value for resistance improvement in crops. In the present study, small RNA sequencing and transcriptome sequencing were carried out between rice (a nonhost species of S.

View Article and Find Full Text PDF

The cross-resistance to etofenprox in Nilaparvata lugens with a high adaptability to resistant rice variety IR56.

Pest Manag Sci

January 2025

Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China.

Background: The application of resistant rice varieties and insecticides represents two crucial strategies for managing the brown planthopper (BPH), Nilaparvata lugens (Stål). Insects often employ similar detoxification mechanisms to metabolize plant secondary metabolites and insecticides, which poses a potential risk that BPH population adapted to resistant rice may also obtain resistance to some insecticides.

Results: Here in a BPH population (R-IR56) that has adapted to the resistant rice variety IR56 through continuous selection, the moderate resistance to etofenprox was observed.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11% in the United States. As for other types of tumors, such as colorectal cancer, aberrant lipid synthesis and reprogrammed lipid metabolism have been suggested to be associated with PDAC development and progression.

Aim: To identify the possible involvement of lipid metabolism in PDAC by analyzing in tumoral and non-tumoral tissues the expression level of the most relevant genes involved in the long-chain fatty acid (FA) import into cell.

View Article and Find Full Text PDF

may inhibit esophageal squamous cell carcinoma growth and metastasis by regulating the axis.

Transl Cancer Res

December 2024

Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

Background: FOXF2, a member of the transcription factor FOX family proteins, plays a key role in tumorigenesis and tumor aggressiveness. However, the potential molecular mechanism of FOXF2 in esophageal squamous cell carcinoma (ESCC) remains largely unknown. Exploring its role and mechanism in ESCC progression may help identify new diagnostic markers and therapeutic targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!