Age-related cholinergic dysfunction within the basal forebrain (BF) is one of the key hallmarks for age-related cognitive decline. Given that higher cardiorespiratory fitness (CRF) induces neuroprotective effects that may differ by sex, we investigated the moderating effects of sex on the associations between CRF, BF cholinergic function, and cognitive function in older adults. 176 older adults (68.5 years) were included from the Nathan Kline Institute Rockland Sample. Functional connectivity (rsFC) of the BF subregions including the medial septal nucleus/diagonal band of Broca (MS/DB) and nucleus basalis of Meynert (NBM) were computed from resting-sate functional MRI. Modified Astrand-Ryhming submaximal cycle ergometer protocol was used to estimate CRF. Trail making task and inhibition performance during the color word interference test from the Delis-Kaplan Executive Function System and Rey Auditory Verbal Learning Test were used to examine cognitive function. Linear regression models were used to assess the associations between CRF, BF rsFC, and cognitive performance after controlling for age, sex, and years of education. Subsequently, we measured the associations between the variables in men and women separately to investigate the sex differences. There was an association between higher CRF and greater rsFC between the NBM and right middle frontal gyrus in older men and women. There were significant associations between CRF, NBM rsFC, and trail making task number-letter switching performance only in women. In women, greater NBM rsFC mediated the association between higher CRF and better trail making task number-letter switching performance. These findings provide evidence that greater NBM rsFC, particularly in older women, may be an underlying neural mechanism for the relationship between higher CRF and better executive function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11005819 | PMC |
http://dx.doi.org/10.1007/s11682-023-00784-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!