Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Studying the metal-ligand monoligation of alkali/alkaline earth metals (AMs) in solution represents a significant challenge due to the low stabilization of their complexes and the absence of an effective strategy to identify this type of weak binding. Herein, we show that the modulation of the intramolecular charge-transfer (ICT) in an excited ambidentate organic fluorophore is a convenient strategy to characterize the binding chemistry of AM cations in solution through simple steady-state fluorescence and fluorescence lifetime measurements. The key points of the fluorophore as a metal-binding probe were the location of diverse coordination functionalities with different binding abilities (ionic-, pseudo-covalent- and non-covalent-probes) along the donor-acceptor (D-A) chain and the occurrence of an intramolecular charge-transfer (ICT) mechanism upon excitation. The binding of these functionalities with AM-cations generated selective and specific fluorescence responses, which were quantifiable and allowed us to recognize the primary, secondary and tertiary interactions for all the AM cations in the solution. The relative binding affinities for each one of the functionalities with AM cations was estimated, and a general and consistent perspective of the binding of AMs as a function of their location in the Periodic Table, hardness property and ionic radius was established. The binding preferences of the AM cations were supported by DFT calculations. Our strategy allowed us to validate the binding dynamics of AMs in solution for three types of key ligations, which opens a new perspective to recognize weak intermolecular interactions derived from acidic species and rationally design selective AM-cation probes using an ICT-based ambidentate organic fluorophore.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cp04691a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!