Genetic studies place Tbx5 at the apex of the sinoatrial node (SAN) transcriptional program. To understand its role in SAN differentiation, clonal embryonic stem (ES) cell lines were made that conditionally overexpress Tbx5, Tbx3, Tbx18, Shox2, Islet-1, and MAP3k7/TAK1. Cardiac cells differentiated using embryoid bodies (EBs). EBs overexpressing Tbx5, Islet1, and TAK1 beat faster than cardiac cells differentiated from control ES cell lines, suggesting possible roles in SAN differentiation. Tbx5 overexpressing EBs showed increased expression of TAK1, but cardiomyocytes did not differentiate as SAN cells. EBs showed no change in the expression of the SAN transcription factors Shox2 and Islet1 and decreased expression of the SAN channel protein HCN4. EBs constitutively overexpressing TAK1 direct cardiac differentiation to the SAN fate but have reduced phosphorylation of its targets, p38 and Jnk. This opens the possibility that blocking the phosphorylation of TAK1 targets may have the same impact as forced overexpression. To test this, we treated EBs with 5z-7-Oxozeanol (OXO), an inhibitor of TAK1 phosphorylation. Like TAK1 overexpressing cardiac cells, cardiomyocytes differentiated in the presence of OXO beat faster and showed increased expression of SAN genes (Shox2, HCN4, and Islet1). This suggests that activation of the SAN transcriptional network can be accomplished by blocking the phosphorylation of TAK1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10261723PMC
http://dx.doi.org/10.1242/bio.059881DOI Listing

Publication Analysis

Top Keywords

cardiac cells
12
expression san
12
phosphorylation tak1
12
san
9
embryoid bodies
8
tak1
8
sinoatrial node
8
san transcriptional
8
san differentiation
8
cell lines
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!