We present a hybrid, multi-method, computational scheme for protein/ligand systems well suited to be used on modern and forthcoming massively parallel computing systems. The scheme relies on a multi-scale polarizable molecular modeling, approach to perform molecular dynamics simulations, and on an efficient Density Functional Theory (DFT) linear scaling method to post-process simulation snapshots. We use this scheme to investigate recent α-ketoamide inhibitors targeting the main protease of the SARS-CoV-2 virus. We assessed the reliability and the coherence of the hybrid scheme, in particular, by checking the ability of MM and DFT to reproduce results from high-end ab initio computations regarding such inhibitors. The DFT approach enables an a posteriori fragmentation of the system and an investigation into the strength of interaction among identified fragment pairs. We show the necessity of accounting for a large set of plausible protease/inhibitor conformations to generate reliable interaction data. Finally, we point out ways to further improve α-ketoamide inhibitors to more strongly interact with particular protease domains neighboring the active site.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0148064 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!