Background: Pelvic, hip, and long bone fractures can result in significant bleeding at the time of injury, with further blood loss if they are treated with surgical fixation. People undergoing surgery are therefore at risk of requiring a blood transfusion and may be at risk of peri-operative anaemia. Pharmacological interventions for blood conservation may reduce the risk of requiring an allogeneic blood transfusion and associated complications.
Objectives: To assess the effectiveness of different pharmacological interventions for reducing blood loss in definitive surgical fixation of the hip, pelvic, and long bones.
Search Methods: We used a predefined search strategy to search CENTRAL, MEDLINE, PubMed, Embase, CINAHL, Transfusion Evidence Library, ClinicalTrials.gov, and the WHO International Clinical Trials Registry Platform (ICTRP) from inception to 7 April 2022, without restrictions on language, year, or publication status. We handsearched reference lists of included trials to identify further relevant trials. We contacted authors of ongoing trials to acquire any unpublished data.
Selection Criteria: We included randomised controlled trials (RCTs) of people who underwent trauma (non-elective) surgery for definitive fixation of hip, pelvic, and long bone (pelvis, tibia, femur, humerus, radius, ulna and clavicle) fractures only. There were no restrictions on gender, ethnicity, or age. We excluded planned (elective) procedures (e.g. scheduled total hip arthroplasty), and studies published since 2010 that had not been prospectively registered. Eligible interventions included: antifibrinolytics (tranexamic acid, aprotinin, epsilon-aminocaproic acid), desmopressin, factor VIIa and XIII, fibrinogen, fibrin sealants, and non-fibrin sealants.
Data Collection And Analysis: Two review authors independently assessed trial eligibility and risk of bias, and extracted data. We assessed the certainty of the evidence using GRADE. We did not perform a network meta-analysis due to lack of data.
Main Results: We included 13 RCTs (929 participants), published between 2005 and 2021. Three trials did not report any of our predefined outcomes and so were not included in quantitative analyses (all were tranexamic acid versus placebo). We identified three comparisons of interest: intravenous tranexamic acid versus placebo; topical tranexamic acid versus placebo; and recombinant factor VIIa versus placebo. We rated the certainty of evidence as very low to low across all outcomes. Comparison 1. Intravenous tranexamic acid versus placebo Intravenous tranexamic acid compared to placebo may reduce the risk of requiring an allogeneic blood transfusion up to 30 days (RR 0.48, 95% CI 0.34 to 0.69; 6 RCTs, 457 participants; low-certainty evidence) and may result in little to no difference in all-cause mortality (Peto odds ratio (Peto OR) 0.38, 95% CI 0.05 to 2.77; 2 RCTs, 147 participants; low-certainty evidence). It may result in little to no difference in risk of participants experiencing myocardial infarction (risk difference (RD) 0.00, 95% CI -0.03 to 0.03; 2 RCTs, 199 participants; low-certainty evidence), and cerebrovascular accident/stroke (RD 0.00, 95% CI -0.02 to 0.02; 3 RCTs, 324 participants; low-certainty evidence). We are uncertain if there is a difference between groups for risk of deep vein thrombosis (Peto OR 2.15, 95% CI 0.22 to 21.35; 4 RCTs, 329 participants, very low-certainty evidence), pulmonary embolism (Peto OR 1.08, 95% CI 0.07 to 17.66; 4 RCTs, 329 participants; very low-certainty evidence), and suspected serious drug reactions (RD 0.00, 95% CI -0.03 to 0.03; 2 RCTs, 185 participants; very low-certainty evidence). No data were available for number of red blood cell units transfused, reoperation, or acute transfusion reaction. We downgraded the certainty of the evidence for imprecision (wide confidence intervals around the estimate and small sample size, particularly for rare events), and risk of bias (unclear or high risk methods of blinding and allocation concealment in the assessment of subjective measures), and upgraded the evidence for transfusion requirement for a large effect. Comparison 2. Topical tranexamic acid versus placebo We are uncertain if there is a difference between topical tranexamic acid and placebo for risk of requiring an allogeneic blood transfusion (RR 0.31, 95% CI 0.08 to 1.22; 2 RCTs, 101 participants), all-cause mortality (RD 0.00, 95% CI -0.10 to 0.10; 1 RCT, 36 participants), risk of participants experiencing myocardial infarction (Peto OR 0.15, 95% CI 0.00 to 7.62; 1 RCT, 36 participants), cerebrovascular accident/stroke (RD 0.00, 95% CI -0.06 to 0.06; 1 RCT, 65 participants); and deep vein thrombosis (Peto OR 1.11, 95% CI 0.07 to 17.77; 2 RCTs, 101 participants). All outcomes reported were very low-certainty evidence. No data were available for number of red blood cell units transfused, reoperation, incidence of pulmonary embolism, acute transfusion reaction, or suspected serious drug reactions. We downgraded the certainty of the evidence for imprecision (wide confidence intervals around the estimate and small sample size, particularly for rare events), inconsistency (moderate heterogeneity), and risk of bias (unclear or high risk methods of blinding and allocation concealment in the assessment of subjective measures, and high risk of attrition and reporting biases in one trial). Comparison 3. Recombinant factor VIIa versus placebo Only one RCT of 48 participants reported data for recombinant factor VIIa versus placebo, so we have not presented the results here.
Authors' Conclusions: We cannot draw conclusions from the current evidence due to lack of data. Most published studies included in our analyses assessed the use of tranexamic acid (compared to placebo, or using different routes of administration). We identified 27 prospectively registered ongoing RCTs (total target recruitment of 4177 participants by end of 2023). The ongoing trials create six new comparisons: tranexamic acid (tablet + injection) versus placebo; intravenous tranexamic acid versus oral tranexamic acid; topical tranexamic acid versus oral tranexamic acid; different intravenous tranexamic acid dosing regimes; topical tranexamic acid versus topical fibrin glue; and fibrinogen (injection) versus placebo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241722 | PMC |
http://dx.doi.org/10.1002/14651858.CD013499.pub2 | DOI Listing |
BMC Musculoskelet Disord
December 2024
Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, 317000, China.
Background: There is controversy regarding the efficacy of intravenous combined topical tranexamic acid. We conducted this study to systematically assess the effectiveness of intravenous combined topical tranexamic acid (combined TXA) in spinal surgery to guide clinical practice.
Methods: The review process was conducted according to the PRISMA guidelines.
J Craniofac Surg
October 2024
Department of Plastic Surgery, University of California, Irvine.
Enhanced recovery after surgery (ERAS) protocols have informed perioperative care across multiple surgical specialties, optimizing patient outcomes through surgical stress management and accelerated recovery. This study evaluates the familiarity and adoption of ERAS elements among craniofacial and oral and maxillofacial surgeons in pediatric orthognathic surgery, a field where a formal ERAS protocol has not been established. A closed-ended survey of 102 surgeons was conducted to assess familiarity with and utilization of 14 ERAS elements.
View Article and Find Full Text PDFBurns
November 2024
Faculty of Medicine, Universidad de Colima, Colima, Mexico. Electronic address:
Introduction: Burns are traumatic events that can affect multiple systems beyond the skin. The rapid removal of the burn eschar is a key step in the effective treatment of severe burns, and surgical debridement is currently the standard of care for eschar removal in burn patients. However, surgical debridement is highly hemorrhagic.
View Article and Find Full Text PDFShock
December 2024
Emergency and Critical Care Center, Hokkaido University Hospital, Sapporo, Japan.
Background: Death in the early phase of trauma is primarily attributable to uncontrolled bleeding exacerbated by trauma-induced coagulopathy (TIC). A comprehensive synthesis of the available evidence on interventions for TIC is needed.
Methods: We conducted a systematic review and meta-analysis of blood component products and tranexamic acid administrations for severe trauma patients with TIC.
Post acne erythema (PAE) is a common sequela of acne inflammation, and it refers to telangiectasia and erythematous lesions remaining after the acne treatment. Although some PAE may improve over time, persisting PAE might be esthetically undesirable for patients. The efficacy of various treatment options for PAE has been investigated in many studies but there exists no gold standard treatment modality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!