A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Study of capsule endoscopy delivery at scale through enhanced artificial intelligence-enabled analysis (the CESCAIL study). | LitMetric

Aim: Lower gastrointestinal (GI) diagnostics have been facing relentless capacity constraints for many years, even before the COVID-19 era. Restrictions from the COVID pandemic have resulted in a significant backlog in lower GI diagnostics. Given recent developments in deep neural networks (DNNs) and the application of artificial intelligence (AI) in endoscopy, automating capsule video analysis is now within reach. Comparable to the efficiency and accuracy of AI applications in small bowel capsule endoscopy, AI in colon capsule analysis will also improve the efficiency of video reading and address the relentless demand on lower GI services. The aim of the CESCAIL study is to determine the feasibility, accuracy and productivity of AI-enabled analysis tools (AiSPEED) for polyp detection compared with the 'gold standard': a conventional care pathway with clinician analysis.

Method: This multi-centre, diagnostic accuracy study aims to recruit 674 participants retrospectively and prospectively from centres conducting colon capsule endoscopy (CCE) as part of their standard care pathway. After the study participants have undergone CCE, the colon capsule videos will be uploaded onto two different pathways: AI-enabled video analysis and the gold standard conventional clinician analysis pathway. The reports generated from both pathways will be compared for accuracy (sensitivity and specificity). The reading time can only be compared in the prospective cohort. In addition to validating the AI tool, this study will also provide observational data concerning its use to assess the pathway execution in real-world performance.

Results: The study is currently recruiting participants at multiple centres within the United Kingdom and is at the stage of collecting data.

Conclusion: This standard diagnostic accuracy study carries no additional risk to patients as it does not affect the standard care pathway, and hence patient care remains unaffected.

Download full-text PDF

Source
http://dx.doi.org/10.1111/codi.16575DOI Listing

Publication Analysis

Top Keywords

capsule endoscopy
12
colon capsule
12
care pathway
12
study
8
cescail study
8
video analysis
8
diagnostic accuracy
8
accuracy study
8
standard care
8
analysis
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!