Cyano-bridged 4d-4f molecular nanomagnets have re-called increasing research interests in molecular magnetism since they offer more possibilities in achieving novel nanomagnets with versatile structures and magnetic interactions. In this work, four β-diketone ligands bearing different substitution N-sites were designed and synthesized, namely 1-(2-pyridyl)-3-(3-pyridyl)-1,3-propanedione (HL ), 1,3-Bis (3-pyridyl)-1,3-propanedione (HL ), 1-(4-pyridyl)-3-(3-pyridyl)-1,3-propanedione (HL ), and 1,3-Bis (4-pyridyl)-1,3-propanedione (HL ), to tune the magnetic relaxation behaviors of cyano-bridged {Dy Mo } systems. By reacting with DyCl ⋅ 6H O and K Mo(CN) ⋅ 2H O, four cyano-bridged complexes, namely {[Dy[Mo (CN) ](HL ) (H O) ]} ⋅ 6H O (1), {[Dy[Mo (CN) ](HL )(H O) (CH OH)]} ⋅ 2CH OH ⋅ 3H O (2), {[Dy[Mo (CN) ](HL )(H O) (CH OH)] ⋅ H O} (3), and {[Dy[Mo (CN) ](HL ) (H O) ]} ⋅ 2H O⋅CH OH (4) were obtained. Structural analyses revealed that 1 and 4 are binuclear complexes, 2 has a tetragonal structure, and 3 exhibits a stair-like polymer chain structure. The Dy ions in all complexes have eight-coordinated configurations with the coordination spheres DyO N for 1 and 4, DyO N for 2, and DyO N for 3. Magnetic measurements indicate that 1 is a zero-field single-molecule magnet (SMM) and complexes 2-4 are field-induced SMMs, with complex 4 featuring a two-step relaxation process. The magnetic characterizations and ab initio calculations revealed that changing the N-sites in the β-diketone ligands can effectively alter the structures and magnetic properties of cyano-bridged 4d-4f nanomagnets by adjusting the coordination environments of the Dy centers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202301262 | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
The continuous push for high-performance photonic switches is one of the most crucial premises for the sustainable scaling of programmable and reconfigurable photonic circuits for a wide spectrum of applications. Conventional optical switches rely on the perturbative mechanisms of mode coupling or mode interference, resulting in inherent bottlenecks in their switching performance concerning size, power consumption and bandwidth. Here we propose and realize a silicon photonic 2×2 elementary switch based on a split waveguide crossing (SWX) consisting of two halves.
View Article and Find Full Text PDFbioRxiv
November 2024
Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
Dalton Trans
December 2024
School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China.
EBioMedicine
December 2024
Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Harvard Medical School, Boston, MA, 02115, USA. Electronic address:
Background: Genetic variants and gene expression predict risk of chronic obstructive pulmonary disease (COPD), but their effect on COPD heterogeneity is unclear. We aimed to define high-risk COPD subtypes using genetics (polygenic risk score, PRS) and blood gene expression (transcriptional risk score, TRS) and assess differences in clinical and molecular characteristics.
Methods: We defined high-risk groups based on PRS and TRS quantiles by maximising differences in protein biomarkers in a COPDGene training set and identified these groups in COPDGene and ECLIPSE test sets.
Arterioscler Thromb Vasc Biol
January 2025
Department of Pathology and Laboratory Medicine (A.H., A.J., D.Y.H.), University of Cincinnati College of Medicine, OH.
Background: apoER2 (apolipoprotein E receptor-2) is a transmembrane receptor in the low-density lipoprotein receptor (LDLR) family with unique tissue expression. A single-nucleotide polymorphism that encodes the R952Q sequence variant has been associated with elevated plasma cholesterol levels and increased myocardial infarction risk in humans. The objective of this study was to delineate the mechanism underlying the association between the apoER2 variant with arginine-to-glutamine substitution at residue 952 (R952Q) and increased atherosclerosis risk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!