Testing the mechanical properties of cardiomyocytes plays an important role in the study of the physiological and pathological processes of constant contraction and diastole of the cardiovascular system. However, there is currently no satisfactory and dynamic technology to measure the mechanical properties of cardiomyocytes in a sustained manner, greatly affecting their practical application in clinical diagnosis and treatment evaluation. Herein, a double resonator piezoelectric cytometry (DRPC) technique was employed for dynamic monitoring of H9C2 cardiomyocyte adhesion and the effects of two cardiovascular drugs on the contractile properties of H9C2 cardiomyocytes, , isoprenaline (ISO, a positive inotropic agent) and verapamil (VRP, a negative inotropic agent). Specifically, we used 9 MHz AT and BT-cut bare gold and transparent ITO electrodes and compared their dynamic adhesion to the two electrodes modified with RGD and gelatin respectively unmodified to measure the cell generated stress (Δ) exerted on the quartz crystal surface by a population of cells and the cell viscoelastic index (CVI). We found that the DRPC technique can quantitatively measure the magnitude and direction of the generated forces during the adhesion process of the cells and under the effect of drugs. In conclusion, the technique presented in this study can be used for the simultaneous measurement of cell adhesion, traction force and viscoelasticity of living cells in a noninvasive, dynamic and continuous way, making it an ideal tool for assessing the population contractility of cardiomyocytes and evaluating the efficacy and toxicity of cardiovascular drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3ay00254cDOI Listing

Publication Analysis

Top Keywords

contractile properties
8
properties h9c2
8
h9c2 cardiomyocytes
8
double resonator
8
resonator piezoelectric
8
piezoelectric cytometry
8
mechanical properties
8
properties cardiomyocytes
8
drpc technique
8
cardiovascular drugs
8

Similar Publications

Predictive control of musculotendon loads across fast and slow-twitch muscles in a simulated system with parallel actuation.

Wearable Technol

February 2025

Neuromuscular Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, the Netherlands.

Research in lower limb wearable robotic control has largely focused on reducing the metabolic cost of walking or compensating for a portion of the biological joint torque, for example, by applying support proportional to estimated biological joint torques. However, due to different musculotendon unit (MTU) contractile speed properties, less attention has been given to the development of wearable robotic controllers that can steer MTU dynamics directly. Therefore, closed-loop control of MTU dynamics needs to be robust across fiber phenotypes, that is ranging from slow type I to fast type IIx in humans.

View Article and Find Full Text PDF

Tissue deformations are a central feature of development, from early embryogenesis, growth and building the body plan to the establishment of functional organs. These deformations often result from active contractile forces generated by cells and cell collectives, and are mediated by changes in their mechanical properties. Mechanical forces drive the formation of functional organ architectures, but they also coordinate cell behaviour and fate transitions, ensuring robustness of development.

View Article and Find Full Text PDF

Neural determinants explaining the asymmetrical force and skill observed in limb dominance still need to be comprehensively investigated. To address this gap, we recorded myoelectrical activity from biceps brachii using high-density surface electromyography in twenty participants, identifying the maximal voluntary force (MVF) and performing isometric ramp contractions at 35% and 70%MVF and sustained contractions at 10%MVF. Motor unit discharge characteristics were assessed during ramp contractions, the proportion of common synaptic input to motoneurons was calculated with coherence analysis, and the firing rate hysteresis (∆F) was used to estimate spinal motoneuron intrinsic properties.

View Article and Find Full Text PDF

Skeletal muscle architecture is a key determinant of muscle function. Architectural properties such as fascicle length, pennation angle, and curvature can be characterized using Diffusion Tensor Imaging (DTI), but acquiring these data during a contraction is not currently feasible. However, an image registration-based strategy may be able to convert muscle architectural properties observed at rest to their contracted state.

View Article and Find Full Text PDF

Background: Cardiovascular diseases are the first cause of death in the world. Ischemic heart disease is the main cause of heart failure. New approaches are continuously sought to identify better therapeutic success.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!