The process of electrohydrodynamic living cell microencapsulation inside a scaffold during the electrospinning (ES) process is called cell electrospinning (CE). Several studies demonstrate the feasibility of using cell electrospinning for biomedical applications, allowing for the direct biofabrication of living cells to be encapsulated in fibers for the formation of active biological scaffolds. In this review, a comprehensive overview of the materials and methodologies used in cell electrospinning, as well as their biomedical application in tissue engineering, is provided. Cell ES represents an innovative technique for automated application in regenerative medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adbi.202300058 | DOI Listing |
Int J Nanomedicine
January 2025
Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
Purpose: The purpose of this study is to develop an innovative solution for chronic wounds in high-mobility areas, such as joints, where conventional treatments are hindered by passive healing mechanisms and the need for immobilization. By designing a micro-electro-Nanofiber dressing composed of piezoelectric polyvinylidene fluoride (PVDF) integrated with antimicrobial silver nanoparticles (AgNPs), this research aims to address the dual challenges of promoting effective wound healing and maintaining joint mobility.
Methods: Herein, we developed a novel micro-electro-Nanofiber dressing using electrospinning technology, incorporating polyvinylidene fluoride (PVDF) with silver nanoparticles (AgNPs).
Front Bioeng Biotechnol
January 2025
Central Laboratory, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao University, Qingdao, China.
Introduction: Artificial vascular scaffolds can mimic the structure of natural blood vessels and replace the damaged vessels by implanting them at the injury site to perform the corresponding functions. Electrospinning technology can perfectly combine biological signals and topographical cues to synergistically induce directed cell migration and growth.
Methods: In this study, poly (caprolactone) (PCL) nanofibers, PCL nanofibers uniformly coated with the extracellular matrix derived from endothelial cells (ECd), and bi-directional linear gradient ECd-coated PCL nanofibers were prepared by electrospinning and electrospray techniques to evaluate their effects on the proliferation and migration of Human umbilical vein endothelial cells (HUVECs) and rapid endothelialization.
Carbohydr Polym
March 2025
Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
This study introduces a novel bilayer wound dressing that integrates a quaternized chitosan-polyacrylic acid (QCs-PAA) sponge as the top layer with electrospun nanofibers containing curcumin as the bottom layer. For the first time, QCs and PAA were combined in an 80:20 ratio through freeze-drying to form a porous sponge layer with ideal structural properties, including 83 ± 6 % porosity and pore diameters of 290 ± 12.5 μm.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, PR China. Electronic address:
Oral fast dissolving films represent a novel dosage form for probiotics. To reduce the dependence of film preparation on synthetic materials, a polysaccharide-based oral fast dissolving nanofilm for probiotics was fabricated through pullulan (PUL) electrospinning. An electrospinnability map of PUL with varying physical properties was developed, identifying a molecular weight of 200 kDa and a concentration of 20 % as suitable conditions for achieving favorable fiber morphology.
View Article and Find Full Text PDFBiofabrication
January 2025
College of Textiles & Clothing, Qingdao University, 308 Ningxia Road, Qingdao, Qingdao, Shandong, 266071, CHINA.
The design and development of advanced surgical sutures with appropriate structure and abundant bio-functions are urgently required for the chronic wound closure and treatment. In this study, an integrated technique routine combining modified electrospinning with hot stretching process was proposed and implemented to fabricate poly(L-lactic acid) (PLLA) nanofiber sutures, and the Salvia miltiorrhiza Bunge-Radix Puerariae herbal compound (SRHC) was encapsulated into PLLA nanofibers during the electrospinning process to enrich the biofunction of as-generated sutures. All the PLLA sutures loading without or with SRHC were found to exhibit bead-free and highly-aligned nanofiber structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!