The production of hydrogen and soluble metabolite products from water hyacinth via dark fermentation was modeled. The model was built on the assumption that the substrate exists in two forms (i.e., soluble and particulate) and undergoes two stages (i.e., hydrolysis and acidogenesis) in the dark fermentation process. The modified Michaelis-Menten and surface-limiting models were applied to describe the hydrolysis of soluble and particulate forms, respectively. Meanwhile, the acidogenesis stage was modeled based on the multi-substrate-single-biomass model. The effects of temperature, pH, and substrate concentration were integrated into the model to increase flexibility. As a result, the model prediction agreed with the experimental and literature data of water hyacinth-fed dark fermentation, with high coefficient of determination values of 0.92 - 0.97 for hydrogen and total soluble metabolite products. These results indicate that the proposed model could be further applied to dark fermentation's downstream and hybrid processes using water hyacinth and other substrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2023.129266 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!